Computational Intelligence SNN Addendum Final Quiz

- 1. Which encoding method in SNN's represents information in the frequency of spikes?
 - Temporal Encoding
 - \bigcirc Rate Encoding
 - \bigcirc Binary Encoding
 - \bigcirc Vector Encoding
 - \bigcirc SHA-256
- 2. Why are SNNs considered more energy efficient than traditional neural networks?
 - \bigcirc They have fewer layers.
 - \bigcirc They operate only on binary data.
 - $\bigcirc\,$ Spike events are somewhat sparse.
 - \bigcirc They use cloud-based storage.
- 3. One of the challenges for SNNs is:
 - \bigcirc Overfitting
 - \bigcirc Training
 - \bigcirc Energy Efficiency
 - \bigcirc Real Time Operation
- 4. Real-time learning in SNNs can be achieved using which of the following principles?
 - \bigcirc Backpropagation
 - \bigcirc Reinforcement Learning
 - STDP (Spike-Timing Dependent Plasticity)
 - \bigcirc Dropout
- 5. The "black box" problem refers to:
 - \bigcirc The inability to look inside hardware devices.
 - The unclear inner workings and reasoning of neural networks.
 - \bigcirc A special type of SNN.
 - A method to encrypt data in neural networks.

- 6. The absence of a comprehensive theory for SNNs means:
 - \bigcirc They are not based on biological principles.
 - \bigcirc They cannot be implemented in real-world applications.
 - There's no unified understanding or framework on their inner workings and optimal designs.
 - They are purely theoretical and don't have practical applications.
- 7. Sketch a Neuron. Include the soma, dendrites, synapses, and axon.

Extra Credit

8. Given the emergence of SNNs and neural hardware, write a short paragraph on the future of neural computing. Hypothesize on the trajectory of AI and neural computing in the next decade. How might these innovations influence areas like robotics, real-time control systems, and low-energy devices.