Computational Intelligence

Instructor
Tom Poliquin

Brief Introduction

Name
Where you Work
What you Expect from Class
What is your Favorite Language

Logistics

Class Structure

Lecture
In Class Problems
Homework

Grading

Attendance 25\%

Homework 50\%
Class Participation 25\%

What this course is

High Level Overview of Cl

Emphasis on Practical Use

What this course is not

Theory
Systems Design
Statistical Problem Solving

Course Overview

Definition

History
Problem Solving
Neural Nets
Genetic Algorithms
Genetic Programming
PSO

Statistics

What is Cl

Make Computers Think

Makes Possible Perception
Reasoning and Decision Making
Design of Intelligent Agents

History of CI

1956 Begins

(Central Planning)

1987 - Becomes Science
(More Agent Based)

History of CI

Recent Successes

Medical Diagnosis
Darpa Logistics
Medical Robot Assistants

Deep Blue

History of CI

Recent Successes

CI is a Piece
of the Solution
The Spice of the Meal

Problem Solving

Why do we need CI

Problems are Hard

Problem Solving

Hard Problems

Mathematically Difficult Huge Search Spaces Noisy
IIl Defined

*(Simplification often destroys Problem)

Problem Solving
 Dimensionality

How many
Variables
Landscape
Typically
Fitness is Z
Direction
Hill Climbing

Problem Solving

Why are Problems Hard

- Large Search Space
- So Complicated that to get any Answer Model must be Oversimplified
- Evaluation Function Difficult
- The Person Solving Problem is unprepared or Imagines a Barrier to Solution

TSP Problem

Traveling Salesman

- List of Cities to Visit
 $\frac{(n-1)!}{2}$

- Find Shortest Path to Visit Each City only Once

10 Cities 181,000 Possible Solutions 20 Cities 10,000,000,000,000,000

SAT Problem

Boolean Satisfy Ability

$$
\begin{aligned}
& \text { What } x^{\prime} \text { s Makes } F(x) \text { True } \\
& F(x)=\left(x_{3} \text { and } x_{4}\right) \text { or }\left(x_{1} \text { and } x_{2}\right)
\end{aligned}
$$

What Happens with 100 Variables (100 Dimensions)

1,000,000,000,000,000,000,000,000,000,000 Possibilities

Problem Solving

Traditional

EC
Has Competition Among Solutions

Practical Concerns

Expert systems 80's

- Hard to Gather Data
- Static
- Politics

Practical Concerns

Neural Networks 90's

- Fragile Models
- Difficult to Maintain

Practical Concerns

CI Euphoria

By Applying Combinations of Techniques More Problems Can Be Solved

Practical Concerns

Dow Chemical Case Study

- Evolutionary Computation
- Symbolic Regression (GP/PSO) Allows Insight
- Optimization (GA/PSO)
- Neural Networks
- Clustering (K Means)
- Statistics

Practical Concerns

Dow Modeling Process

- Problem and Success Definition
- Data Preprocessing \& Classification
- Variable Selection
- Data Condensation
- Model Generation (Genetic Programming)
- Model Selection
- Model Validation (Statistics)
- Model Exploitation
- Model Maintenance \& Support

EC Basics

Design the Best Rabbit

Rabbit/Fox Paradigm

Rabbits

Rabbit Survives Against Foxes Cosmic Rays
Surviving Rabbits Procreate

EC Paradigm
Population of
Possible Solutions
Fitness Function
Variation
Selection

Designing Evolutionary Algorithms

Representation

Evaluation

Variation

Selection
Initialization

EC Algorithm

Procedure Evolutionary Algorithm

```
begin
    t <- 0
    Initialize P(t)
    Evaluate P(t)
    while (not terminating condition) do
    begin
        t <- t+1
        select P(t) from P(t-1)
        alter P(t)
        evaluate P(t)
    end
end
```


EC Practical Steps

Model

Objective
Representation

Fitness

What Data do I have What can I Ignore

What Answer do I want
For my selected EC Paradigm, how should I Represent the problem

How do I Decide which of the Solutions is better

EC - Details

Wouldn't it be nice
if we had a
"General Purpose Problem Solver?"
We Can't.

But we can use our
Domain Knowledge

NFL
 No Free Lunch

No Algorithm Better Than Another Averaged Over all Problems
(

NFL

Our Algorithm

Exit a Room in the Dark

- Move in Straight Line Until Wall
- Move Along Wall Until Opening Felt
- Go Through Opening

NFL

Mr. NFL's Algorithm
Stop in all Corners

- Move in Straight Line Until Wall
- Move Along Wall Until Feel Corner
- Stop

NFL

Mr. NFL
"Averaged over all Problems my Algorithm is as good as yours"

- Find the Center of the Room
- Avoid all Walls

NFL

Some Algorithms are better than others for specific real world Problems

Must use knowledge about the Problem (Domain Specific)

EC Details

Representation

Possible Solutions -> Data Structure

Common Representations

Fixed Length Vector Permutations
FSM
Symbolic Expressions

EC Details

Representation

Possible Solutions -> Data Structure

Common Representations

Fixed Length Vector Permutations
FSM
Symbolic Expressions

EC Details

Representation

Fixed Length Vector

- Which to choose
- Parameter Optimization

List of Binary Strings
List of Floating Point Numbers

- Time Sequence

$$
\left[a_{1}, a_{2}, \ldots k\right]
$$

$$
y(t)=a, y[t-1] \ldots t \text { any }[t-k]
$$

EC Details

Representation

Permutations
 Optimize Sequence Order

$[1,2,3, \ldots j]$
[Number of States
For Each State
Input
FSM
(Finite State
Machine)
Output
Next State Starting State]

EC Details

Representation

Symbolic Expressions
Parse Tree
Functions
(Non-Leaf Nodes) (+, -, * ...)
Terminals
(Leaf Nodes)
(Inputs, 2, 3 ...)

EC Details

Evaluation

- Judges "Goodness" of Possible Solution
- Can sometimes be Relative among Individuals
- Generally the most time consuming
- Once you find out It's horrible stop Evaluating
- Quality often depends on Representation

EC Details Variation

For Fixed Length Vectors

Binary

Floating Point Integers

- Flip a Bit
- Crossover
- Crossover
- Add Zero Mean Gaussian Distributed Numbers To Each Value

EC Details

Variation

For FSMs

- Add a State
- Delete a State
- Change a Start State
- Change an Output Symbol
- Change next State

EC Details

Evaluation

For Symbolic Expressions

- Crossover
- Mutate One Node
- Swap Arguments

EC Details

Selection

Stochastic

Roulette Wheel Tournament

Deterministic

- Choose n best
- Choose Only n best from Offspring

GP

Terminals

Variables
Input Sensors State Variables

Constants
E.G. 3 or Nil

Functions with no Args
To Generate
Side Effects
(Change State)
Connectives
Progn2, Progn3.....

GP

Functions

Arithmetic Functions
Math Functions
Boolean Operators
Conditionals
Domain Specific
List for Returning Multiple Values

$$
\text { *, }+,-\ldots
$$

$$
\sin (x) \ldots
$$

and ...
if ...

GP

So the Representation Problem is Picking Functions and Terminals

We still need to know how to do the Evaluation (Fitness)

GP

Tableau

Similar to EC

Model
Objective Terminals Functions Fitness

GP

Boolean II Multiplexer

$$
\Gamma
$$

View it as Binary Symbolic Regression Problem
 -

GP

Boolean II Tableau

Objective

Terminals

Functions
Fitness

Find S Expression with some Output as Function

Ao, A1, A2
$D_{0}, D_{1}, D_{2}, D_{3}, D_{4}, D_{5}, D_{6}, D_{7}$
and, or, not, if
\# of cases (of the 2048) S-Expression is correct
(2)

\qquad
\qquad
\qquad
\qquad

Cor

0
λ
5
(a)
\qquad
\qquad

$+1$
\qquad
品
-

Bang-Bang Cart Tableau

Objective

Terminals
Functions
Fitness

Find Time Optimal
Control Strategy to Center a Cart

State Variables X and V
+, - , *, \%, ABS, GT
Time for 20 Fitness Cases to Center Cart Timeout Costs 10 Seconds
■

GP

Inverse Kinematics

$$
\begin{aligned}
& x=f\left(\Theta_{0}, \Theta_{1}\right) \\
& y=f\left(\Theta_{0}, \Theta_{1}\right) \\
& \text { Given } x \& y \text { Find } \Theta_{0}, \Theta_{1}
\end{aligned}
$$

Inverse Kinematics Tableau

Objective

Terminals

Functions
Find a Vector of 2 Angles to move a 2 Link arm to a Given x,y Position
$\mathrm{T}_{0}-x, y, E R C$
$\mathrm{~T}_{1}-$ Angle- $0, x, y$, ERC

List2, +, -, *, \% Exp Asin, Acos, Atan (Root is Always List2)

Fitness
Sum over 25 Fitness
Cases of the Error Distance

GP

Try

Find

Broom Balancing
Control Strategy to Balance Broom and Bring Car to Rest in Minimal Time

PSO

Particle Swarm Optimization

Social Behavior as Optimization

Boids
Ants

Bees
CAS Example

PSO

Concept for Optimizing Non-Linear Functions

Roots in Artificial Life and Evolutionary Computation

Effective on a wide Variety of Problems

PSO

Discovered Through Social Model Simulation

Related to Bird Flocking and Swarming Theory

Expanded to Multidimensional Search

Paradigm Simplified

PSO

$$
\begin{aligned}
V_{I D}=V_{I D} & +C_{1} \text { rand }\left(P_{I D}-X_{I D}\right) \\
& +C_{2} \text { rand }\left(P_{G D}-X_{I D}\right) \\
X_{I D}=X_{I D} & +V_{I D} \\
& C_{1}=C_{2}
\end{aligned}
$$

$$
1
$$

V is Limited to VMax

F

V is Limited to VMax

Computational Intelligence
 -

Iax

$$
3
$$

A

V is Limited to VMax
筬
\qquad (
Compo

$$
\begin{array}{r}
\text { Neil } \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array}
$$

- All Particles

PRO

 \section*{\section*{Neighborhoods
 \section*{\section*{Neighborhoods

 ?}

 ?}
Computational Intelligence
 \square

os

- Various Topologies Star, Ring, ETC
 - Various Topologies Star, Ring, ETC
 Star, Ring, EIC

.
就
-

 $=$

H
a
,

- 0

a
\qquad
\qquad
\qquad

,

\qquad
\qquad
\qquad

\qquad
\qquad

PSO

Similarities to EC

- Population of Solutions
- Randomly Initialized
- Interactions Among Population members

PSO

Differences from EC

- Solutions Flown Through Problem Space
- Each Individual Remembers its Best
- Individuals Survive

PSO

Changes to Original Algorithm

Inertia
VMax
Changing Topologies
Binary Version

PSO

Most Promising Application is Training Neural Networks

