
probSim01

March 16, 2023

Simulate Probabilities
[4]: :opt no-lint

[12]: -- Imports
--{-# LANGUAGE FlexibleContexts#-}
import System.Random
import Data.List
import Text.Printf
import Data.Bits

Random Numbers
[13]: -- Random Number Lists of Lists

rList' :: Int -> [[Float]]
rList' rSeed = [randomRs (0, 1.0) g | g <- gl (mkStdGen rSeed)]

where gl gen = gen:(gl (fst $ split gen)) -- returns list of generators

Utilities
[14]: toInts :: [Bool] -> [Int]

toInts bs = map (\b -> if b then 1 else 0) bs

tupleToList :: (Bool,Bool,Bool,Bool) -> [Bool]
tupleToList (a,b,c,d) = [a,b,c,d]

boolListToInt :: [Bool] -> Int
boolListToInt = foldl (\acc x -> acc * 2 + fromEnum x) 0

event :: Float -> [Float] -> [Bool]
event prob rList =

map (\r -> r < prob) rList

Main Functions

The functions below deal with exactly 4 events.

I might expand it to use lists of events later.

[15]: anyNEvents :: (Int -> Bool) -> [Bool] -> [Bool] -> [Bool] -> [Bool] -> Float
anyNEvents f as bs cs ds =

1

let
iList = map tupleToList (zip4 as bs cs ds)
iInts = map toInts iList
counts = map (\ks -> sum ks) iInts
ones = filter f counts

in (fromIntegral (length ones)) / (fromIntegral (length counts))

specificEvents :: (Int -> Bool) -> [Bool] -> [Bool] -> [Bool] -> [Bool] -> Float
specificEvents f as bs cs ds =

let
bList = map tupleToList (zip4 as bs cs ds)
iInts = map boolListToInt bList
trues = filter f iInts

in (fromIntegral (length trues)) / (fromIntegral (length as))

atLeastMaskedEvents :: (Int -> Int) -> [Bool] -> [Bool] ->
[Bool] -> [Bool] -> Float

atLeastMaskedEvents f as bs cs ds =
let

bList = map tupleToList (zip4 as bs cs ds)
iInts = map boolListToInt bList
val = f 15 -- figuure out and value from user
anding = map f iInts
ones = filter (\x -> x == val) anding

in (fromIntegral (length ones)) / (fromIntegral (length iInts))

Make the Events
[16]: randLists = rList' 12345 -- random seed

rLen = 200000
a = take rLen $ event 0.2 (randLists !! 0) -- e.g. Follow the money
b = take rLen $ event 0.2 (randLists !! 1) -- e.g. Whistleblower truthful
c = take rLen $ event 0.6 (randLists !! 2) -- e.g. Availability bias
d = take rLen $ event 0.1 (randLists !! 3) -- e.g. Russian plot

Function Examples

[19]: -- Routine Test Cases

a1e = anyNEvents (\k -> k == 1) a b c d
printf "Any one event being true = %5.2f\n\n" a1e

a2e = anyNEvents (\k -> ((k == 1) || (k == 2))) a b c d
printf "Any one or two events being true = %5.2f\n\n" a2e

aes = anyNEvents (\k -> ((k==1) || (k==2) || (k==3) || (k==4))) a b c d
printf "Any event being true = %5.2f\n\n" aes

2

aevN = anyNEvents (\k -> (k == 0)) a b c d
printf "Any event being true (using neg) = %5.2f\n\n" (1-aevN)

se = specificEvents (\k -> k == 6) a b c d
printf "\nSpecifc Events b and c not a not d = %5.2f\n\n" se

oldWay = 0.8 * 0.2 * 0.6 * 0.9
printf "The old fashoned way = %5.2f\n\n" oldWay

se2 = specificEvents (\k -> (k == 6) || (k == 2)) a b c d
printf "\nSpecifc Events b and c but never together = %5.2f\n\n" se2

al = atLeastMaskedEvents (\k -> k .&. 6) a b c d
printf "\nAt Least Events b and c (a and d don't care) = %5.2f\n\n" al

Any one event being true = 0.49

Any one or two events being true = 0.73

Any event being true = 0.77

Any event being true (using neg) = 0.77

Specifc Events b and c not a not d = 0.09

The old fashoned way = 0.09

Specifc Events b and c but never together = 0.43

At Least Events b and c (a and d don't care) = 0.12

Early Simple And/Or Attempt

[113]: pAnd :: [Bool] -> [Bool] -> [Bool]
pAnd b1 b2 = map (\(a,b) -> a && b) $ zip b1 b2

pOr :: [Bool] -> [Bool] -> [Bool]
pOr b1 b2 = map (\(a,b) -> a || b) $ zip b1 b2

calc :: ([Bool] -> [Bool] -> [Bool]) -> [Bool] -> [Bool] -> Float
calc f b1 b2 =

let a = f b1 b2
suc = foldl (\cum b -> if b then (cum+1.0) else cum) 0.0 a

in suc/(fromIntegral (length b1))

calc pOr (pOr a b) (pOr c d)

0.76973

3

[]:

4

