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Preface

This textbook for advanced undergraduate and beginning graduate students provides a
systematic introduction into the fields of neuron modeling, neuronal dynamics, neural cod-
ing, and neural networks. It can be used as a text for introductory courses on Computa-
tional and Theoretical Neuroscience or as main text for a more focused course on Neural
Dynamics and Neural Modeling at the graduate level. The book is also a useful resource for
researchers and students who want to learn how different models of neurons and descrip-
tions of neural activity are related to each other.

All mathematical concepts are introduced the pedestrian way: step by step. All chapters
are richly illustrated by figures and worked examples. Each chapter closes with a short
summary and a series of mathematical Exercises. On the authors’ webpage Python source
code is provided for numerical simulations that illustrate the main ideas and models of the
chapter (http://lcn.epfl.ch/~gerstner/NeuronalDynamics.html).

The book is organized into four parts with a total of 20 chapters. Part I provides a general
introduction to the foundations of computational neuroscience and its mathematical tools.
It covers classic material such as the Hodgkin—Huxley model, ion channels and dendrites,
or phase plane analysis of two-dimensional systems of differential equations. A special
focus is put on the firing threshold for the generation of action potentials, in the Hodgkin—
Huxley models, as well as in reduced two-dimensional neuron models such as the Morris—
Lecar model.

Part II focuses on simplified models for the dynamics of a single neuron. It covers
nonlinear integrate-and-fire models with and without adaptation, in particular the quadratic
and exponential integrate-and-fire model, as well as the Izhikevich model and adaptive
exponential integrate-and-fire model. The question of noise in the neural dynamics is posed
and two classic descriptions of noise are presented. First, stochasticity arising from random
spike arrival: this approach leads to a noise term in the differential equation of the voltage,
and can be formulated as a Langevin equation. Second, intrinsic stochasticity of neurons
leading to an “escape” across the firing threshold even when the neuron is in the sub-
threshold regime: this approach leads to the framework of a Generalized Linear Model
which is systematically introduced and discussed in applications of neuronal coding and
decoding. The relation between the neuron models of Part II and biological data is
highlighted and systematic parameter optimization algorithms are presented.
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Part III takes the simplified models derived in Part II and builds networks out of these.
The collective properties of the network dynamics are described in terms of equations for
the population activity also called the population firing rate. The conditions under which
population activity can be described by a standard rate model are identified.

Part IV makes the link from dynamics to cognition. The population activity equations
are used for an analysis of famous paradigms of computational and cognitive neuroscience,
such as the neural activity during decision making or memory retrieval. In Part IV we also
sketch the theory of learning in relation to synaptic plasticity. The book closes with a
fascinating application of the principles of neuronal dynamics to help patients suffering
from Parkinson’s disease.

A small fraction of the text of the present book is based on Spiking Neuron Models
(Cambridge University Press) which was first published in 2002 and has been reprinted
several times since then. In the meantime, the field has changed and we felt that a simple
update of Spiking Neuron Models for a second edition would not be enough to give credit
to the developments that have occurred.

Scientifically, the scope of Spiking Neuron Models was limited in several respects. First,
it mainly focused on linear integrate-and-fire models, and mentioned their nonlinear coun-
terparts only in passing. In the present book, nonlinear integrate-and-fire models are treated
in a full chapter. Second, adaptation was neglected in the treatment 10 years ago — mainly
because population equations for adaptive neurons were not yet available. In the present
book, adaptive integrate-and-fire models are covered at length in a separate chapter and
the population activity equations for adaptive neurons are derived. Third, while the Spike
Response Model with escape noise has always contained all the features of a Generalized
Linear Model (GLM), by the year 2002 the theory of GLMs had not yet found its way into
the field of neuroscience and was therefore simply absent from the original book. Given
the phenomenal rise of GLMs in neuroscience, the theory of GLMs for fitting neuronal
data is given a prominent role in this book. Finally, during teaching we always felt the
need to show famous applications of the principles of neuronal dynamics, such as retrieval
of contents from associative memories or decision dynamics and the neuroscience of free
will. The present book covers these topics.

On a more general level, we felt that it would be useful to have a book that is, from the
beginning, designed as a textbook rather than a monograph. Therefore, the present book
makes the link to experimental data more visible, has more explanatory text, and, last but
not least, provides a series of exercises that have already been tested in the classroom over
several years.

We hope that this book will be useful for students and researchers alike.

Waulfram Gerstner, Werner Kistler, Richard Naud, Liam Paninski
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Advice to the reader

Each chapter starts with a specific question and gives first intuitive answers in the first
section. As the chapter proceeds, the material gets more advanced, and the presentation
becomes more technical. For a first reading of the book, it is possible to read only the first
section, or first two sections, of each chapter and just glance at the subsequent sections.

More specific advice depends on the background. For example, readers who are new to
the field of computational neuroscience are advised to spend enough time with the classic
material of Part I, before they move on to Parts I and IV. The expert reader may skip Part I
completely and start directly with Part II.

In Part III, the main ideas are exposed in Chapters 12 and 15, which present the founda-
tions for the rate models in Part IV. The more technical chapters and sections of Part III can
be skipped at a first reading, but are necessary for a thorough understanding of the current
developments in the field of computational neuroscience.

Part IV contains applications of neuronal dynamics to questions of cognition and can be
read in any arbitrary order.

Sections marked by an asterisk () are mathematically more advanced and can be omit-
ted during a first reading of the book.
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1

Introduction: neurons and mathematics

The primary aim of this chapter is to introduce several elementary notions of neuroscience,
in particular the concepts of action potentials, postsynaptic potentials, firing thresholds,
refractoriness, and adaptation. Based on these notions a preliminary model of neuronal
dynamics is built and this simple model (the leaky integrate-and-fire model) will be used
as a starting point and reference for the generalized integrate-and-fire models, which are
the main topic of the book, to be discussed in Parts IT and III. Since the mathematics used
for the simple model is essentially that of a one-dimensional linear differential equation,
we take this first chapter as an opportunity to introduce some of the mathematical notation
that will be used throughout the rest of the book.

Owing to the limitations of space, we cannot — and do not want to — give a comprehensive
introduction to such a complex field as neurobiology. The presentation of the biological
background in this chapter is therefore highly selective and focuses on those aspects needed
to appreciate the biological background of the theoretical work presented in this book. For
an in-depth discussion of neurobiology we refer the reader to the literature mentioned at
the end of this chapter.

After the review of neuronal properties in Sections 1.1 and 1.2 we will turn, in Sec-
tion 1.3, to our first mathematical neuron model. The last two sections are devoted to a
discussion of the strengths and limitations of simplified models.

1.1 Elements of neuronal systems

Over the past hundred years, biological research has accumulated an enormous amount of
detailed knowledge about the structure and function of the brain. The elementary process-
ing units in the central nervous system are neurons, which are connected to each other in an
intricate pattern. A tiny portion of such a network of neurons is sketched in Fig. 1.1, which
shows a drawing by Ramoén y Cajal, one of the pioneers of neuroscience around 1900. We
can distinguish several neurons with triangular or circular cell bodies and long wire-like
extensions. This picture can only give a glimpse of the network of neurons in the cortex. In
reality, cortical neurons and their connections are packed into a dense network with more
than 10* cell bodies and several kilometers of “wires” per cubic millimeter. Across areas of
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Fig. 1.1 This reproduction of a drawing of Ramén y Cajal shows a few neurons in the mammalian
cortex that he observed under the microscope. Only a small portion of the neurons contained in the
sample of cortical tissue have been made visible by the staining procedure; the density of neurons is
in reality much higher. Cell b is a typical example of a pyramidal cell with a triangularly shaped cell
body. Dendrites, which leave the cell laterally and upwards, can be recognized by their rough surface.
The axons are recognizable as thin, smooth lines which extend downwards with a few branches to
the left and right. From Ramon y Cajal (1909).

the brain the wiring pattern may look different. In all areas, however, neurons of different
sizes and shapes form the basic elements.

Still, the cortex does not consist exclusively of neurons. Beside the various types of
neuron, there are a large number of “supporter” cells, so-called glia cells, that are required
for energy supply and structural stabilization of brain tissue. Since glia cells are not directly
involved in information processing, we will not discuss them any further. We will also
neglect a few rare subtypes of neuron, such as non-spiking neurons in the mammalian
retina. Throughout this book we concentrate on spiking neurons only.

1.1.1 The ideal spiking neuron

A typical neuron can be divided into three functionally distinct parts, called dendrites, the
soma, and the axon; see Fig. 1.2. Roughly speaking, the dendrites play the role of the “input
device” that collects signals from other neurons and transmits them to the soma. The soma
is the “central processing unit” that performs an important nonlinear processing step: if
the total input arriving at the soma exceeds a certain threshold, then an output signal is
generated. The output signal is taken over by the “output device,” the axon, which delivers
the signal to other neurons.

The junction between two neurons is called a synapse. Let us suppose that a neuron sends
a signal across a synapse. It is common to refer to the sending neuron as the presynaptic
cell and to the receiving neuron as the postsynaptic cell. A single neuron in vertebrate
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Fig. 1.2 (a) Single neuron in a drawing by Ramoén y Cajal. Dendrites, soma, and axon can be clearly
distinguished. The inset shows an example of a neuronal action potential (schematic). The action
potential is a short voltage pulse of 1-2 ms duration and an amplitude of about 100 mV. (b) Signal
transmission from a presynaptic neuron j to a postsynaptic neuron i. The synapse is marked by the
dashed circle. The axons at the lower right end lead to other neurons. (Schematic figure.)

\

cortex often connects to more than 10* postsynaptic neurons. Many of its axonal branches
end in the direct neighborhood of the neuron, but the axon can also stretch over several
centimeters so as to reach neurons in other areas of the brain.

1.1.2 Spike trains

The neuronal signals consist of short electrical pulses and can be observed by placing a
fine electrode either on the soma or close to the soma or axon of a neuron; see Fig. 1.2.
The pulses, so-called action potentials or spikes, have an amplitude of about 100 mV and
typically a duration of 1-2 ms. The form of the pulse does not change as the action potential
propagates along the axon. A chain of action potentials emitted by a single neuron is called
a spike train — a sequence of stereotyped events which occur at regular or irregular intervals;
see Fig. 1.3. Since isolated spikes of a given neuron look alike, the form of the action
potential does not carry any information. Rather, it is the number and the timing of spikes
which matter. The action potential is the elementary unit of signal transmission.

Action potentials in a spike train are usually well separated. Even with very strong input,
it is impossible to excite a second spike during or immediately after a first one. The mini-
mal distance between two spikes defines the absolute refractory period of the neuron. The
absolute refractory period is followed by a phase of relative refractoriness where it is diffi-
cult, but not impossible, to excite an action potential.
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Fig. 1.3 Action potentials are stereotypical events. Membrane potential recordings aligned on the
time of maximum voltage show little variability of the action potential shape. Data is courtesy of
Maria Toledo-Rodriguez and Henry Markram (Toledo-Rodriguez et al., 2004).

1.1.3 Synapses

The site where the axon of a presynaptic neuron makes contact with the dendrite (or soma)
of a postsynaptic cell is the synapse. The most common type of synapse in the vertebrate
brain is a chemical synapse. At a chemical synapse, the axon terminal comes very close to
the postsynaptic neuron, leaving only a tiny gap between pre- and postsynaptic cell mem-
brane. This is called the synaptic cleft. When an action potential arrives at a synapse, it
triggers a complex chain of biochemical processing steps that lead to a release of neuro-
transmitter from the presynaptic terminal into the synaptic cleft. As soon as transmitter
molecules have reached the postsynaptic side, they will be detected by specialized recep-
tors in the postsynaptic cell membrane and lead (either directly or via a biochemical sig-
naling chain) to an opening of specific channels causing ions from the extracellular fluid
to flow into the cell. The ion influx, in turn, changes the membrane potential at the post-
synaptic site so that, in the end, the chemical signal is translated into an electrical response.
The voltage response of the postsynaptic neuron to a presynaptic spike is called the post-
synaptic potential.

Apart from chemical synapses neurons can also be coupled by electrical synapses, some-
times called gap junctions. Specialized membrane proteins make a direct electrical con-
nection between the two neurons. Not much is known about the functional aspects of gap
junctions, but they are thought to be involved in the synchronization of neurons.

1.1.4 Neurons are part of a big system

Neurons are embedded in a network of billions of other neurons and glial cells that make up
the brain tissue. The brain is organized into different regions and areas. The cortex can be
thought of as a thin but extended sheet of neurons, folded over other brain structures. Some
cortical areas are mainly involved in processing sensory input, other areas are involved in
working memory or motor control.

Neurons in sensory cortices can be experimentally characterized by the stimuli to which
they exhibit a strong response. For example, neurons in the primary visual cortex respond
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Electrode

Fig. 1.4 Receptive fields in the visual cortex. An electrode probes the activity of a neuron while
light dots are presented on a gray screen. The neuron responds whenever the stimulus falls into its
receptive field, schematically indicated as an oval.

to dots of lights only within a small region of the visual space. The limited zone where a
neuron is sensitive to stimuli is called the neuron’s receptive field (Fig. 1.4).

The receptive field of so-called simple cells in the visual cortex is not homogeneous, but
has typically two or three elongated subfields. When a light dot falls into one of the positive
subfields, the neuron increases its activity, i.e., it emits more spikes than in the absence of a
stimulus. When a light dot falls into a negative subfield, it decreases the activity compared
to its spontaneous activity in the presence of a gray screen. A spot of light is in fact not the
best stimulus. The neuron responds maximally to a moving light bar with an orientation
aligned with the elongation of the positive subfield (Hubel and Wiesel, 1968).

A large body of the neuroscience literature consists in determining the receptive fields
of neurons in sensory cortices. While neurons in the visual cortex respond to appropriate
visual stimuli, neurons in the auditory cortex or somatosensory cortex respond to auditory
or tactile stimuli. The concept of receptive field becomes less well defined if one moves
away from the sensory cortex. For example, in the inferotemporal cortex, neurons respond
to objects independently of their size and location; in working memory tasks, frontal
cortex neurons are active during periods where no stimulus is present at all. In Parts II,
III, and IV of this book we touch on aspects of receptive fields and memory of neuronal
networks embedded in a big system. For the moment, we return to a simple, idealized
neuron.

1.2 Elements of neuronal dynamics

The effect of a spike on the postsynaptic neuron can be recorded with an intracellular
electrode which measures the potential difference u(t) between the interior of the cell and
its surroundings. This potential difference is called the membrane potential. Without any
input, the neuron is at rest corresponding to a constant membrane potential u.;. After the



8 Introduction

arrival of a spike, the potential changes and finally decays back to the resting potential; see
Fig. 1.5a. If the change is positive, the synapse is said to be excitatory. If the change is
negative, the synapse is inhibitory.

At rest, the cell membrane has already a strongly negative polarization of about —65 mV.
An input at an excitatory synapse reduces the negative polarization of the membrane and
is therefore called depolarizing. An input that increases the negative polarization of the
membrane even further is called hyperpolarizing.

1.2.1 Postsynaptic potentials

Let us formalize the above observation. We study the time course u;(¢) of the membrane
potential of neuron i. Before the input spike has arrived, we have u;(f) = Upest. At =0
the presynaptic neuron j fires its spike. For ¢ > 0, we see at the electrode a response of
neuron i

u,-(t)—urest:: Eij(t). (1.1)

The right-hand side of Eq. (1.1) defines the postsynaptic potential (PSP). If the voltage
difference u;(t) — urest is positive (negative) we have an excitatory (inhibitory) postsynaptic
potential or short EPSP (IPSP). In Fig. 1.5a we have sketched the EPSP caused by the
arrival of a spike from neuron j at an excitatory synapse of neuron i.

1.2.2 Firing threshold and action potential

Consider two presynaptic neurons j = 1,2, which both send spikes to the postsynaptic neu-
ron i. Neuron j = 1 fires spikes at tfl),tfz), ..., similarly neuron j = 2 fires at tél), éz), e
Each spike evokes a postsynaptic potential & or &g, respectively. As long as there are
only few input spikes, the total change of the potential is approximately the sum of the

individual PSPs,
wi(t) =3, D et — 1)) + threst (12)
Jf

i.e., the membrane potential responds linearly to input spikes; see Fig. 1.5b.

On the other hand, linearity breaks down if too many input spikes arrive during a short
interval. As soon as the membrane potential reaches a critical value 1, its trajectory shows
a behavior that is quite different from a simple summation of PSPs: the membrane potential
exhibits a pulse-like excursion with an amplitude of about 100 mV. This short voltage pulse
will propagate along the axon of neuron i to the synapses with other neurons. After the
pulse the membrane potential does not directly return to the resting potential, but passes,
for many neuron types, through a phase of hyperpolarization below the resting value. This
hyperpolarization is called “spike-afterpotential.”

Single EPSPs have amplitudes in the range of 1 mV. The critical value for spike initiation
is about 20 to 30 mV above the resting potential. In most neurons, four spikes — as shown
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Urest—  ~~ 77777
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Fig. 1.5 A postsynaptic neuron i receives input from two presynaptic neurons j = 1,2. (a) Each
presynaptic spike evokes an excitatory postsynaptic potential (EPSP) that can be measured with an
electrode as a potential difference u;(f) — urest. The time course of the EPSP caused by the spike of
neuron j = 1 is & (t — t{ ). (b) An input spike from a second presynaptic neuron j = 2 that arrives
shortly after the spike from neuron j = 1 causes a second postsynaptic potential that adds to the
first one. (c) If u;(r) reaches the threshold ¥, an action potential is triggered. As a consequence,
the membrane potential starts a large positive pulse-like excursion (arrow). On the voltage scale
of the graph, the peak of the pulse is out of bounds. After the pulse the voltage returns to a value
below the resting potential upeg;.
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schematically in Fig. 1.5¢ — are thus not sufficient to trigger an action potential. Instead,
about 20-50 presynaptic spikes have to arrive within a short time window to trigger a
postsynaptic action potential.

1.3 Integrate-and-fire models

We have seen in the previous section that, to a first and rough approximation, neuronal
dynamics can be conceived as a summation process (sometimes also called “integration”
process) combined with a mechanism that triggers action potentials above some critical
voltage. Indeed in experiments firing times are often defined as the moment when the
membrane potential reaches some threshold value from below. In order to build a phe-
nomenological model of neuronal dynamics, we describe the critical voltage for spike ini-
tiation by a formal threshold ©. If the voltage u;(r) (that contains the summed effect of all
inputs) reaches ¥} from below, we say that neuron i fires a spike. The moment of threshold
crossing defines the firing time tif )

The model makes use of the fact that neuronal action potentials of a given neuron always
have roughly the same form. If the shape of an action potential is always the same, then
the shape cannot be used to transmit information: rather information is contained in the
presence or absence of a spike. Therefore action potentials are reduced to “events” that
happen at a precise moment in time.

Neuron models where action potentials are described as events are called “integrate-and-
fire” models. No attempt is made to describe the shape of an action potential. Integrate-and-
fire models have two separate components that are both necessary to define their dynamics:
first, an equation that describes the evolution of the membrane potential u;(¢); and second,
a mechanism to generate spikes.

In the following we introduce the simplest model in the class of integrate-and-fire mod-
els using the following two ingredients: (i) a linear differential equation to describe the
evolution of the membrane potential; (ii) a threshold for spike firing. This model is called
the “leaky integrate-and-fire” model. Generalized integrate-and-fire models, which will be
discussed in Part II of the book, can be seen as variations of this basic model.

1.3.1 Integration of inputs

The variable u; describes the momentary value of the membrane potential of neuron i. In
the absence of any input, the potential is at its resting value u.s. If an experimenter injects
a current /(¢) into the neuron, or if the neuron receives synaptic input from other neurons,
the potential u; will be deflected from its resting value.

In order to arrive at an equation that links the momentary voltage u;(#) — uyes to the input
current I(¢), we use elementary laws from the theory of electricity. A neuron is surrounded
by a cell membrane, which is a rather good insulator. If a short current pulse I() is injected
into the neuron, the additional electrical charge ¢ = [I(¢')d’ has to go somewhere: it will
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(b)

I(t) Fig. 1.6 Electrical properties of
neurons: the passive membrane.
(a) A neuron, which is enclosed
by the cell membrane (big circle),
receives a (positive) input current
I(r) which increases the electri-
cal charge inside the cell. The cell
membrane acts like a capacitor in
parallel with a resistor which is in
line with a battery of potential urest
(zoomed inset). (b) The cell mem-
brane reacts to a step current (top)
with a smooth voltage trace (bot-
tom).

u(t)

Urest 1

charge the cell membrane (Fig. 1.6a). The cell membrane therefore acts like a capacitor
of capacity C. Because the insulator is not perfect, the charge will, over time, slowly leak
through the cell membrane. The cell membrane can therefore be characterized by a finite
leak resistance R.

The basic electrical circuit representing a leaky integrate-and-fire model consists of a
capacitor C in parallel with a resistor R driven by a current I(¢); see Fig. 1.6. If the driving
current /(¢) vanishes, the voltage across the capacitor is given by the battery voltage urest.
For a biological explanation of the battery we refer the reader to the next chapter. Here we
have simply inserted the battery “by hand” into the circuit so as to account for the resting
potential of the cell (Fig. 1.6a).

In order to analyze the circuit, we use the law of current conservation and split the
driving current into two components,

1(t) = Ig+Ic. (1.3)

The first component is the resistive current /g which passes through the linear resistor R. It
can be calculated from Ohm’s law as Ig = ug/R where ug = u — urey is the voltage across
the resistor. The second component I charges the capacitor C. From the definition of the
capacity as C = ¢/u (where ¢ is the charge and u the voltage), we find a capacitive current
Ic =dq/dt = Cdu/ds. Thus

=R +C T (1.4)
We multiply Eq. (1.4) by R and introduce the time constant 7,, = RC of the “leaky integra-
tor.” This yields the standard form

(™ % = —[u(t) — urest) + RI(1). (1.5)

We refer to u as the membrane potential and to 7, as the membrane time constant of the
neuron.
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Fig. 1.7 Short pulses and total charged delivered on the passive membrane. The amplitude of
the voltage response (bottom) of a leaky integrator driven by a short current pulse /(¢) (top)
depends only on the total charge g = [ I(¢)dt, not on the height of the current pulse.

From a mathematical point of view, Eq. (1.5) is a linear differential equation. From the
point of view of an electrical engineer, it is the equation of a leaky integrator or RC-circuit
where resistor R and capacitor C are arranged in parallel. From the point of view of the
neuroscientist, Eq. (1.5) is called the equation of a passive membrane.

What is the solution of Eq. (1.5)? We suppose that, for whatever reason, at time t = 0
the membrane potential takes a value uest + Au. For t > 0 the input vanishes I(¢) = 0.
Intuitively we expect that, if we wait long enough, the membrane potential relaxes to its
resting value u.s. Indeed, the solution of the differential equation with initial condition
u(ty) = Urest + Aut is

u(t) — trest = Auexp (—t_to> fort >1g. (1.6)
Tm
Thus, in the absence of input, the membrane potential decays exponentially to its resting
value. The membrane time constant 7,, = RC is the characteristic time of the decay. For a
typical neuron it is in the range of 10 ms, and hence rather long compared with the duration
of a spike which is of the order of 1 ms.

The validity of the solution (1.6) can be checked by taking the derivative on both sides
of the equation. Since it is the solution in the absence of input, it is sometimes called the
“free” solution.

1.3.2 Pulse input

Before we continue with the definition of the integrate-and-fire model and its variants, let
us study the dynamics of the passive membrane defined by Eq. (1.5) in a simple example.
Suppose that the passive membrane is stimulated by a constant input current I(¢) = Iy
which starts at # = 0 and ends at time # = A. For the sake of simplicity we assume that the
membrane potential at time # = 0 is at its resting value u(0) = uyes.
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As a first step, let us calculate the time course of the membrane potential. The trajec-
tory of the membrane potential can be found by integrating (1.5) with the initial condition
1(0) = urest. The solution for 0 <t < Ais

u(t) = trest +R1o [l —exp (—Tl)} . (1.7

m
If the input current never stopped, the membrane potential (1.7) would approach for t — oo

the asymptotic value u(eo) = uest + RIp. We can understand this result by looking at the
electrical diagram of the RC-circuit in Fig. 1.6. Once a steady state is reached, the charge
on the capacitor no longer changes. All input current must then flow through the resistor.
The steady-state voltage at the resistor is therefore Rl so that the total membrane voltage
1S Uyrest + RIp.

Example: Short pulses and the Dirac §-function

For short pulses the steady-state value is never reached. At the end of the pulse, the
value of the membrane potential is given according to Eq. (1.7) by u(A) = urest +

1

RI [1 —exp (—%)] . For pulse durations A < 7, (Where < means much smaller than)

we can expand the exponential term into a Taylor series: exp(x) = 1 +x+x%/2+---. To
first order in x = — 2

T

we find

A
u(A) :“rest—FRIo? for A < 1,. (1.8)
m

Thus, the voltage deflection depends linearly on the amplitude and the duration of the
pulse (Fig. 1.7, thick line).

We now make the duration A of the pulse shorter and shorter while increasing the
amplitude of the current pulse to a value Iy = g/A, so that the integral [I(z)dt = g
remains constant. In other words, the total charge g delivered by the current pulse is
always the same. Interestingly, the voltage deflection at the end of the pulse calcu-
lated from Eq. (1.8) remains unaltered, however short we make the pulse. Indeed, from
Eq. (1.8) we find u(A) — threst = gR/ Ty = q/C where we have used 7,, = RC. Thus we
can consider the limit of an infinitely short pulse

1) = 3(t) = lim % for0 <t <A, and0 otherwise. (1.9)

o(t) is called the Dirac 6-function. It is defined by 8(x) = 0 for x # 0 and
I 0(x)dx=1.

Obviously, the Dirac §-function is a mathematical abstraction since it is practically
impossible to inject a current with an infinitely short and infinitely strong current pulse
into a neuron. Whenever we encounter a d-function, we should remember that, as a
stand-alone object, it looks strange, but it becomes meaningful as soon as we integrate
over it. Indeed the input current defined in Eq. (1.9) needs to be inserted into the
differential equation (1.5) and integrated. The mathematical abstraction of the Dirac
o-function suddenly makes a lot of sense, because the voltage change induced by a
short current pulse is always the same, whenever the duration of the pulse A is much
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Fig. 1.8 In formal models of spiking neurons the shape of an action potential (dashed line) is usually
replaced by a J-pulse (vertical line). The negative overshoot (spike-afterpotential) after the pulse
is replaced by a “reset” of the membrane potential to the value u,. The pulse is triggered by the
threshold crossing at t,-l.

shorter than the time constant 7,,,. Thus, the exact duration of the pulse is irrelevant, as
long as it is short enough.

With the help of the §-function, we no longer have to worry about the time course
of the membrane potential during the application of the current pulse: the membrane
potential simply jumps at time # = 0 by an amount ¢/C. Thus, it is as if we added
instantaneously a charge g onto the capacitor of the RC circuit.

What happens for times # > A? The membrane potential evolves from its new initial
value urest +¢/C in the absence of any further input. Thus we can use the “free” solution
from Eq. (1.6) with #p = A and Au = ¢/C.

We can summarize the considerations of this section by the following statement. The
solution of the linear differential equation with pulse input

du
Tma = —[u(t) — trest) + Rq 8 (2) (1.10)
iS u(t) = trest for ¢ < 0 and given by
R t
u(t) — Urest = g — €Xp (—) fort > 0. (1.11)
Tm Tm

The right-hand side of the equation is called the impulse-response function or Green’s
function of the linear differential equation.

1.3.3 The threshold for spike firing
Throughout this book, the term “firing time” refers to the moment when a given neuron
emits an action potential #/. The firing time #/ in the leaky integrate-and-fire model is
defined by a threshold criterion

ou@)y=0. (1.12)
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Fig. 1.9 Integrate-and-fire model. (a) Time course of the membrane potential of an integrate-and-fire
neuron driven by constant input current Iy = 1.5. The voltage Au(t) = u — uregt is normalized by the
value of the threshold ¢. Units of input current are chosen so that Iy = 1 corresponds to a trajectory
that reaches the threshold for + — oo. After a spike, the potential is reset to u, = urest. (b) Voltage
response to a time-dependent input current.

The form of the spike is not described explicitly. Rather, the firing time is noted and imme-
diately after ¢/ the potential is reset to a new value u, < ¥,
lim u(t' +8)=u. 1.13
6—0;0 >0u( ) " ( )

For t >t/ the dynamics is again given by (1.5) until the next threshold crossing occurs. The
combination of leaky integration (1.5) and reset (1.13) defines the leaky integrate-and-fire
model (Stein, 1967b). The voltage trajectory of a leaky integrate-and-fire model driven by
a constant current Ip is shown in Fig. 1.9.

For the firing times of neuron i we write tif where f = 1,2,... is the label of the spike.
Formally, we may denote the spike train of a neuron i as the sequence of firing times

Si(t)=Y.8(t—1]) (1.14)
7

where 6(x) is the Dirac O-function introduced earlier, with §(x) = 0 for x # 0 and
J7 8(x)dx = 1. Spikes are thus reduced to points in time (Fig. 1.8). We remind the reader
that the J-function is a mathematical object that needs to be inserted into an integral in
order to give meaningful results.

1.3.4 Time-dependent input (*)!

We study a leaky integrate-and-fire model which is driven by an arbitrary time-dependent
input current I(¢); see Fig. 1.9b. The firing threshold has a value ¥ and after firing the
potential is reset to a value u, < ¥

!'Sections marked by an asterisk are mathematically more advanced and can be omitted during a first reading of the book.
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In the absence of a threshold, the linear differential equation (1.5) has a solution

m TI‘VL

R 0
u(l‘)zuregt—&—?/o exXp (—S> I(l*S)dS’ (115)

where I(¢) is an arbitrary input current and 7,, = RC is the membrane time constant. We as-
sume here that the input current is defined for a long time back into the past: 1 — —eo so that
we do not have to worry about the initial condition. A sinusoidal current /(z) = Iy sin(w?)
or a step current pulse I(t) = I[p©(r), where © denotes the Heaviside step function with
O(r) =0 fort <0and ©(¢t) =1 for t > 0, are two examples of a time-dependent current,
but the solution, Eq. (1.15), is also valid for every other time-dependent input current.

So far our leaky integrator does not have a threshold. What happens to the solution
Eq. (1.15) if we add a threshold ©? Each time the membrane potential hits the threshold,
the variable u is reset from ¢ to u,. In the electrical circuit diagram, the reset of the poten-
tial corresponds to removing a charge g, = C (¥ — u,) from the capacitor (Fig. 1.6) or,
equivalently, adding a negative charge —g, onto the capacitor. Therefore, the reset corre-
sponds to a short current pulse I, = —q, 8(t —t/) at the moment of the firing #/. Indeed, it
is not unusual to say that a neuron “discharges” instead of “fires.” Since the reset happens
each time the neuron fires, the reset current is

L=—q, Y 8(t—1')=—C(0—u)S(t), (1.16)
i

where S(¢) denotes the spike train, defined in Eq. (1.14).

The short current pulse corresponding to the “discharging” is treated mathematically just
like any other time-dependent input current. The total current I(¢) + I,.(¢), consisting of the
stimulating current and the reset current, is inserted into the solution (1.15) to give the final
result

_¢f oo
u(t) = urest+;(u,f ¥) exp (t Tt ) +T£/0 exp <S) I(t—s)ds,  (1.17)

m m m
where the firing times #/ are defined by the threshold condition
tf = {tlu(t) =0} . (1.18)

Note that with our definition of the Dirac d-function in Eq. (1.9), the discharging reset
follows immediately after the threshold crossing, so that the natural sequence of events —
first firing, then reset — is respected.

Equation (1.17) looks rather complicated. It has, however, a simple explanation. In Sec-
tion 1.3.2 we have seen that a short input pulse at time ' causes at time ¢ a response of
the membrane proportional to exp [— (¢ —#'/1,)], sometimes called the impulse response
function or Green’s function; see Eq. (1.11). The second term on the right-hand side of
Eq. (1.17) is the effect of the discharging current pulses at the moment of the reset.

In order to interpret the last term on the right-hand side, we think of a stimulating current
I(r) as consisting of a rapid sequence of discrete and short current pulses. In discrete time,
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there would be a different current pulse in each time step. Because of the linearity of the
differential equation, the effect of all these short current pulses can be added. When we
return from discrete time to continuous time, the sum of the impulse response functions
turns into the integral on the right-hand side of Eq. (1.17).

1.3.5 Linear differential equation vs. linear filter: two equivalent pictures (*)

The leaky integrate-and-fire model is defined by the differential equation (1.5), i.e.,
du

g = ()~ thes] +RI(1), (1.19)
combined with the reset condition
5 j})?§>0u(tf +8)=u,, (1.20)
where ¢/ are the firing times
tf = {tlu(r) = 0}. (1.21)

As we have seen in the previous section, the linear equation can be integrated and yields
the solution (1.17). It is convenient to rewrite the solution in the form

ut):/:n(s) t—sds+/ I(r —s)ds, (1.22)

where we have introduced filters 11(s) = (u, — ¥) exp (—im) and Kk(s) = Zexp (—ﬁ) .
Interestingly, Eq. (1.22) is much more general than the leaky integrate-and-fire model,
because the filters do not need to be exponentials but could have any arbitrary shape.
The filter 1 describes the reset of the membrane potential and, more generally, accounts
for neuronal refractoriness. The filter Kk summarizes the linear electrical properties of the
membrane. Eq. (1.22) in combination with the threshold condition (1.21) is the basis of
the Spike Response Model and Generalized Linear Models, which will be discussed in
Part II.

1.3.6 Periodic drive and Fourier transform (*)

Formally, the complex Fourier transform of a real-valued function f(¢) with argument ¢ on
the real line is

-/ e o = [ f@)] ), (1.23)

where |f(w)| and ¢/(®) are called the amplitude and phase of the Fourier transform at
frequency @. The mathematical condition for a well-defined Fourier transform is that the
function f be Lebesgue integrable with integral [*_|f(¢)|dr < . If f is a function of
time, then f (w) is a function of frequency. An inverse Fourier transform leads back from
frequency-space to the original space, i.e., time.
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For a linear system, the above definition gives rise to several convenient rules for Fourier-
transformed equations. For example, let us consider the system

u(t) = /_ Z k(s) I(t — ) ds, (1.24)

where [(¢) is a real-valued input (e.g., a current), u(¢) the real-valued system output (e.g., a
voltage) and k a linear response filter, or kernel, with x(s) = 0 for s < 0 because of causal-
ity. The convolution on the right-hand side of Eq. (1.24) turns after Fourier transformation
into a simple multiplication, as shown by the following calculation steps:

[ / " k(s)I(t—s) ds} e i1 g

[ xe @ 1 —s)e @0 dsar
= k(o) (o), (1.25)

where we introduced in the last step the variable ¢’ =t — s and used the definition (1.23) of
the Fourier transform.

Similarly, the derivative du/dz of a function u(r) can be Fourier-transformed using the
product rule of integration. The Fourier transform of the derivative of u(t) is iwd(®).

While introduced here as a purely mathematical operation, it is often convenient to visu-
alize the Fourier transform in the context of a physical system driven by a periodic input.
Consider the linear system of Eq. (1.24) with an input

I(1) = e . (1.26)

A short comment on the notation. If the input is a current, it should be real-valued, as
opposed to a complex number. We therefore take Iy as a real and positive number and
focus on the real part of the complex equation (1.26) as our physical input. When we
perform a calculation with complex numbers, we therefore implicitly assume that, at the
very end, we take only the real part of solution. However, the calculation with complex
numbers turns out to be convenient for the steps in between.

Inserting the periodic drive, Eq. (1.26), into Eq. (1.24) yields

J —oo

u(t) = /:; K(s)Igeiw(lfs) ds = {/w K(s)e s ds} Ipe'®" . (1.27)

Hence, if the input is periodic at frequency @ the output is too. The term in square brackets

is the Fourier transform of the linear filter. We write u(t) = ug e’9<(®) ¢/, The ratio between
the amplitude of the output and that of the input is

uo A

— = [k(o)]. (1.28)

Iy

The phase ¢ (@) of the Fourier-transformed linear filter k corresponds to the phase shift
between input and output or, to say it differently, a delay A = ¢/ ® = ¢, T /27 where T is
the period of the oscillation. Fourier transforms will play a role in the discussion of signal
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processing properties of connected networks of neurons in Part I1I of the book.

Example: Periodic drive of a passive membrane

We consider the differential equation of the passive membrane defined in Eq. (1.5)
and choose voltage units such that u.. = 0, i.e.,

du
Tma = —u(t)+RI(). (1.29)

The solution, given by Eq. (1.15), corresponds to the convolution of the input /(¢) with
a causal linear filter x(s) = (1/C)e(=*/™) for s > 0. In order to determine the response
amplitude u to a periodic drive I(t) = Iy e/
of k:

we need to calculate the Fourier transform

1

oo, ) 1
|&(0)| = ‘/ em e ' dr
0

C

Tm

—. 1.30
l+ioTt, ( )

C

For @, >> 1 the right-hand side is proportional to @ ~!. Therefore the amplitude of the
response to a periodic input decreases at high frequencies.

1.4 Limitations of the leaky integrate-and-fire model

The leaky integrate-and-fire model presented in Section 1.3 is highly simplified and neglects
many aspects of neuronal dynamics. In particular, input, which may arise from presynaptic
neurons or from current injection, is integrated linearly, independently of the state of the
postsynaptic neuron:
du
i
where I(7) is the input current. Furthermore, after each output spike the membrane potential
is reset,

= —[u(t) — urest) + RI(1), (1.31)

if u(t) = © then Bﬁl(i)l-lsl>ou(t +90) =u,, (1.32)

so that no memory of previous spikes is kept. Let us list the major limitations of the sim-
plified model discussed so far. All of these limitations will be addressed in the extension
of the leaky integrate-and-fire model presented in Part II of the book.

1.4.1 Adaptation, bursting, and inhibitory rebound

To study neuronal dynamics experimentally, neurons can be isolated and stimulated by
current injection through an intracellular electrode. In a standard experimental protocol
we could, for example, impose a stimulating current that is switched at time #y from a
value /| to a new value 1. Let us suppose that /; = 0 so that the neuron is quiescent for
t < tg. If the current I, is sufficiently large, it will evoke spikes for > 7). Most neurons
will respond to the current step with a spike train where intervals between spikes increase
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Fig. 1.10 Response to a current step. In (a)—(c), the current is switched on at r = 7y to a value
I, > 0. Fast-spiking neurons (a) have short interspike intervals without adaptation while regular-
spiking neurons (c) exhibit adaptation, visible as an increase in the duration of interspike intervals.
An example of a stuttering neuron is shown in (b). Many neurons emit an inhibitory rebound spike
(d) after an inhibitory current /1 < 0 is switched off. Data is courtesy of Henry Markram and Maria
Toledo-Rodriguez (Markram et al., 2004; Toledo-Rodriguez et al., 2004).

successively until a steady state of periodic firing is reached; see Fig. 1.10c. Neurons that
show this type of adaptation are called regularly firing neurons (Connors and Gutnick,
1990). Adaptation is a slow process that builds up over several spikes. Since the standard
leaky integrate-and-fire model resets the voltage after each spike to the same value and
restarts the integration process, no memory is kept beyond the most recent spike. Therefore,
the leaky integrate-and-fire neuron cannot capture adaptation. Detailed neuron models,
which will be discussed in Chapter 2, explicitly describe the slow processes that lead to
adaptation. To mimic these processes in integrate-and-fire neurons, we need to add up
the contributions to refractoriness of several spikes back in the past. As we shall see in
Chapter 6, this can be done in the “filter” framework of Eq. (1.22) by using a filter n for
refractoriness with a time constant much slower than that of the membrane potential, or
by combining the differential equation of the leaky integrate-and-fire model with a second
differential equation describing the evolution of a slow variable; see Chapter 6.

A second class of neurons are fast-spiking neurons. These neurons show no adaptation
(see Fig. 1.10a) and can therefore be well approximated by non-adapting integrate-and-fire
models. Many inhibitory neurons are fast-spiking neurons. Apart from regular-spiking and
fast-spiking neurons, there are also bursting and stuttering neurons which form a separate
group (Connors and Gutnick, 1990). These neurons respond to constant stimulation by a
sequence of spikes that is periodically (bursting) or aperiodically (stuttering) interrupted by
rather long intervals; see Fig. 1.10b. Again, a neuron model that has no memory beyond the
most recent spike cannot describe bursting, but the framework in Eq. (1.22) with arbitrary
“filters” is general enough to account for bursting as well.

Another frequently observed behavior is post-inhibitory rebound. Consider a step current
with I < 0 and I, = 0, i.e., an inhibitory input that is switched off at time #(; see Fig. 1.10d.
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Many neurons respond to such a change with one or more “rebound spikes”; even the
release of inhibition can trigger action potentials. We will return to inhibitory rebound in
Chapter 3.

1.4.2 Shunting inhibition and reversal potential

In the previous section we focused on an isolated neuron stimulated by an applied current.
In reality, neurons are embedded into a large network and receive input from many other

neurons. Suppose a spike from a presynaptic neuron j is sent at time t/ towards the synapse

of a postsynaptic neuron i. When we introduced in Fig. 1.5 the posts]ynaptic potential that
is generated after the arrival of the spike at the synapse, its shape and amplitude did not
depend on the state of the postsynaptic neuron i. This is of course a simplification and
reality is somewhat more complicated. In Chapter 3 we will discuss detailed neuron models
that describe synaptic input as a change of the membrane conductance. Here we simply
summarize the major phenomena.

In Fig. 1.11 we have sketched schematically an experiment where the neuron is driven
by a constant current Iy. We assume that Iy is too weak to evoke firing so that, after some
relaxation time, the membrane potential settles at a constant value ugy. Att = t/ one of the
presynaptic neurons emits a spike so that shortly afterwards the action potential arrives at
the synapse and provides additional stimulation of the postsynaptic neuron. More precisely,
the spike generates a current pulse at the postsynaptic neuron (postsynaptic current, PSC)
with amplitude

PSC oc [ug — Esyn (1.33)

where ug is the membrane potential and Egy, is the “reversal potential” of the synapse.
Since the amplitude of the current input depends on ug, the response of the postsynaptic
potential does so as well. Reversal potentials are systematically introduced in Chapter 2;
models of synaptic input are discussed in Section 3.1.

Example: Shunting inhibition

The dependence of the postsynaptic response upon the momentary state of the neuron
is most pronounced for inhibitory synapses. The reversal potential of inhibitory synapses
Egyn is below, but usually close to the resting potential. Input spikes thus have hardly any
effect on the membrane potential if the neuron is at rest; see Fig. 1.11a. However, if the
membrane is depolarized, the very same input spikes evoke a larger inhibitory postsy-
naptic potential. If the membrane is already hyperpolarized, the input spike can even
produce a depolarizing effect. There is an intermediate value up = Egy, — the reversal
potential — where the response to inhibitory input “reverses” from hyperpolarizing to
depolarizing.

Though inhibitory input usually has only a small impact on the membrane potential,
the local conductivity of the cell membrane can be significantly increased. Inhibitory
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Fig. 1.11 The shape of postsynaptic potentials depends on the momentary level of depolarization.
(a) A presynaptic spike that arrives at time ¢/ at an inhibitory synapse has hardly any effect on the
membrane potential when the neuron is at rest, but a large effect if the membrane potential u is
above the resting potential. If the membrane is hyperpolarized below the reversal potential of the
inhibitory synapse, the response to the presynaptic input changes sign. (b) A spike at an excitatory
synapse evokes a postsynaptic potential with an amplitude that depends only slightly on the momen-
tary voltage u. For large depolarizations the amplitude saturates and becomes smaller. (Schematic
figure.)

synapses are often located on the soma or on the shaft of the dendritic tree. Owing to
their strategic position, a few inhibitory input spikes can “shunt” the whole input that is
gathered by the dendritic tree from hundreds of excitatory synapses. This phenomenon
is called “shunting inhibition.”

The reversal potential for excitatory synapses is usually significantly above the rest-
ing potential. If the membrane is depolarized ug >> ures: the amplitude of an excitatory
postsynaptic potential is reduced, but the effect is not as pronounced as for inhibition.
For very high levels of depolarization a saturation of the EPSPs can be observed; see
Fig. 1.11b.

1.4.3 Conductance changes after a spike

The shape of the postsynaptic potentials depends not only on the level of depolarization but,
more generally, on the internal state of the neuron, e.g., on the timing relative to previous
action potentials.

Suppose that an action potential has occurred at time tl.f and that a presynaptic spike

arrives at a time r/ > tl:f
;

J
now on the time t; —t/; see Fig. 1.12. If the presynaptic spike arrives during or shortly
after a postsynaptic action potential, it has little effect because some of the ion channels
that were involved in firing the action potential are still open. If the input spike arrives
much later, it generates a postsynaptic potential of the usual size. We will return to this

effect in Chapter 2.

at the synapse j. The form of the postsynaptic potential depends

1.4.4 Spatial structure

The form of postsynaptic potentials also depends on the location of the synapse on the
dendritic tree. Synapses that are located far away from the soma are expected to evoke a
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Fig. 1.12 The shape of postsynaptic potentials (dashed lines) depends on the time ¢t — tif that has
passed since the last output spike of neuron i. The postsynaptic spike has been triggered at time tif .

A presynaptic spike that arrives at time tf shortly after the spike of the postsynaptic neuron has a

smaller effect than a spike that arrives much later. Data is courtesy of Thomas Berger (Berger et al.,
2009).

smaller postsynaptic response at the soma than a synapse that is located directly on the
soma; see Chapter 3. If several inputs occur on the same dendritic branch within a few
milliseconds, the first input will cause local changes of the membrane potential that influ-
ence the amplitude of the response to the input spikes that arrive slightly later. This may
lead to saturation or, in the case of so-called “active” currents, to an enhancement of the
response. Such nonlinear interactions between different presynaptic spikes are neglected
in the leaky integrate-and-fire model. Whereas a purely linear dendrite can be incorporated
in the “filter”” description of the model, as we shall see in Chapter 6, nonlinear interactions
cannot. Small regions on the dendrite where a strong nonlinear boosting of synpatic cur-
rents occurs are sometimes called dendritic “hot spots.” The boosting can lead to dendritic
spikes which, in contrast to normal somatic action potentials last for tens of milliseconds
(Larkum and Nevian, 2008).

1.5 What can we expect from integrate-and-fire models?

The leaky integrate-and-fire model is an extremely simplified neuron model. As we have
seen in the previous section, it neglects many features that neuroscientists have observed
when they study neurons in the living brain or in slices of brain tissue. Therefore the
question arises: what should we expect from such a model? Clearly we cannot expect it
to explain the complete biochemistry and biophysics of neurons. Nor do we expect it to
account for highly nonlinear interactions that are caused by active currents in some ‘“hot
spots” on the dendritic tree. However, the integrate-and-fire model is surprisingly accu-
rate when it comes to generating spikes, i.e., precisely timed events in time. Thus, it could
potentially be a valid model of spike generation in neurons, or more precisely, in the soma.

It is reasonable to require from a model of spike generation that it should be able to pre-
dict the moments in time when a real neuron spikes. Let us look at the following schematic
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Fig. 1.13 The challenge of spike time prediction. A current /(¢) is experimentally injected into the
soma of a real neuron in vitro through an electrode. The response of the neuron is recorded and half
of the response is made available for model optimization while part of the response remains hidden.
The challenge is then to use the input /(¢) to predict the spike times of the hidden response with a
mathematical neuron model.

set-up (Fig. 1.13). An experimenter injects a time-dependent input current /(¢) into the
soma of a cortical neuron using a first electrode. With an independent second electrode he
or she measures the voltage at the soma of the neuron. Not surprisingly, the voltage trajec-
tory contains from time to time sharp electrical pulses. These are the action potentials or
spikes.

A befriended mathematical neuroscientist now takes the time course I(¢) of the input
current that was used by the experimenter together with the time course of the membrane
potential of the neuron and adjusts the parameters of a leaky integrate-and-fire model
so that the model generates, for the very same input current, spikes at roughly the same
moments in time as the real neuron. This needs some parameter tuning, but seems feasible.
The relevant and much more difficult question, however, is whether the neuron model can
now be used to predict the firing times of the real neuron for a novel time-dependent input
current that was not used during parameter optimization (Fig. 1.13).

As discussed above, neurons not only show refractoriness after each spike but also
exhibit adaptation which builds up over hundreds of milliseconds. A simple leaky integrate-
and-fire model does not perform well at predicting the spike times of a real neuron. How-
ever, if adaptation (and refractoriness) is added to the neuron model, the prediction works
surprisingly well. A straightforward way to add adaptation is to make the firing threshold
of the neuron model dynamic: after each spike the threshold ¥ is increased by an amount
0, while during a quiescent period the threshold approaches its stationary value 9. We can
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Fig. 1.14 Comparing a generalized integrate-and-fire model with experimental traces. A voltage
trace (thick black trace) recorded in a real neuron driven by a fluctuating current is superposed on
the voltage trace generated by a generalized integrate and fire model (thin line) driven by the same
current. The subthreshold voltage fluctuations are accurately predicted (inset) and the spike timings
are well predicted on average, apart from a few additional or missed spikes (arrows).

use the Dirac -function to express this idea
d
Tadapt g, O (1) =—[0(r) — D] + 0. 8(t—1/) (1.34)
f

where T,gap; 18 the time constant of adaptation (a few hundred milliseconds) and tf =
1 12 1G) . are the firing times of the neuron.

The predictions of an integrate-and-fire model with adaptive threshold agree nicely with
the voltage trajectory of a real neuron, as can be seen from Fig. 1.14. The problem of how
to construct practical, yet powerful, generalizations of the simple leaky integrate-and-fire
model is the main topic of Part II of the book. Another question arising from this is how to
quantify the performance of such neuron models (see Chapter 11).

Once we have identified good candidate neuron models, we will ask in Part III whether
we can construct big populations of neurons with these models, and whether we can use
them to understand the dynamic and computational principles as well as potential neural
codes used by populations of neurons. Indeed, as we shall see, it is possible to make the
transition from plausible single-neuron models to large and structured populations. This
does not mean that we understand the full brain, but understanding the principles of large
populations of neurons from well-tested simplified neuron models is a first and important
step in this direction.

1.6 Summary

The neuronal signal consists of short voltage pulses called action potentials or spikes.
These pulses travel along the axon and are distributed to several postsynaptic neurons
where they evoke postsynaptic potentials. If a postsynaptic neuron receives a sufficient
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number of spikes from several presynaptic neurons within a short time window, its mem-
brane potential may reach a critical value and an action potential is triggered. We say that
the neuron has “fired” a spike. This spike is the neuronal output signal which is, in turn,
transmitted to other neurons.

A particularly simple model of a spiking neuron is the leaky integrate-and-fire model.
First, a linear differential equation describes how input currents are integrated and trans-
formed into a membrane voltage u(¢). Here the input can be the input current injected
by an experimenter into an isolated neuron or synaptic input currents caused by spikes
arriving from other neurons in a large and highly connected network. Second, the model
neuron generates an output spike if the membrane voltage reaches the threshold . Finally,
after spike firing, the integration of the linear differential equation resumes from a reset
value u,.

The simple leaky integrate-and-fire model does not account for long-lasting refractori-
ness or adaptation. However, if the voltage dynamics of the leaky integrate-and-fire model
is enhanced by mechanisms of adaptation, then it can be a powerful tool to accurately
predict spike times of cortical neurons. Such generalized integrate-and-fire models are the
main topic of Part II.

Literature

An elementary, non-technical introduction to neurons and synapses can be found in the
book by Thompson (1993). At an intermediate level is the introductory textbook of
Purves et al. (2008) while the Principles of Neural Science by Kandel et al. (2000) can
be considered as a standard textbook on neuroscience covering a wealth of experimental
results.

The use of mathematics to explain neuronal activity has a long tradition in theoretical
neuroscience, over one hundred years. Phenomenological spiking neuron models similar
to the leaky integrate-and-fire model were proposed in 1907 by Lapicque, who wanted to
predict the first spike after stimulus onset (so that his model did not yet have the reset of
the membrane potential after firing), and have been developed further in different variants
by others (Lapicque, 1907; Hill, 1936; McCulloch and Pitts, 1943; Stein, 1965; Geisler
and Goldberg, 1966; Weiss, 1966; Stein, 1967b). For the “filter” description of integrate-
and-fire models see, for example, Gerstner ef al. (1996b) and Pillow et al. (2008). The
elegance and simplicity of integrate-and-fire models makes them a widely used tool to
describe principles of neural information processing in neural networks of a broad range
of sizes.

A different line of mathematical neuron models are biophysical models, first devel-
oped by Hodgkin and Huxley (1952); these biophysical models are the topic of the next
chapter.
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Exercises

1. Synaptic current pulse. Synaptic inputs can be approximated by an exponential current 1(t) =
q TL‘ exp[f%] fort > tf where t/ is the moment when the spike arrives at the synapse.

(a) Use Eq (1.5) to calculate the response of a passive membrane with time constant Ty, to an
input spike arriving at time t7.

(b) In the solution resulting from (a), take the limit Ty — T,, and show that in this limit the
response is proportional to o< [t — tf | exp[— %] A function of this form is sometimes called an
a-function.

(c) In the solution resulting from (a), take the limit T, — 0. Can you relate your result to the
discussion of the Dirac-8 function?

2. Time-dependent solution. Show that Eq. (1.15) is a solution of the differential equation Eq. (1.5)
for time-dependent input 1(t). To do so, start by changing the variable in the integral from s to
t' =t —s. Then take the derivative of Eq. (1.15) and compare the terms to those on both sides of

the differential equation.
3. Chain of linear equations. Suppose that arrival of a spike at time t! releases neurotransmit-

ter into the synaptic cleft. The amount of available neurotransmitter at time t is Ty % = —x+
ot — f ). The neurotransmitter binds to the postsynaptic membrane and opens channels that
enable a synaptic current T, % = —I+1Iyx(t). Finally, the current charges the postsynaptic mem-
brane according to Ty % = —u+ RI(t). Write the voltage response to a single current pulse as
an integral.
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Ion channels and the Hodgkin—Huxley model

From a biophysical point of view, action potentials are the result of currents that pass
through ion channels in the cell membrane. In an extensive series of experiments on the
giant axon of the squid, Hodgkin and Huxley succeeded in measuring these currents and
described their dynamics in terms of differential equations. Their paper published in 1952,
which presents beautiful experiments combined with an elegant mathematical theory
(Hodgkin and Huxley, 1952), was rapidly recognized as groundbreaking work and eventu-
ally led to the Nobel Prize for Hodgkin and Huxley in 1963. In this chapter, the Hodgkin—
Huxley model is reviewed and its behavior illustrated by several examples.

The Hodgkin—Huxley model in its original form describes only three types of ion chan-
nel. However, as we shall see in Section 2.3 it can be extended to include many other ion
channel types. The Hodgkin—Huxley equations are the basis for detailed neuron models
which account for different types of synapse, and the spatial geometry of an individ-
ual neuron. Synaptic dynamics and the spatial structure of dendrites are the topics of
Chapter 3. The Hodgkin—Huxley model is also the starting point for the derivation of sim-
plified neuron models in Chapter 4 and will serve as a reference throughout the discussion
of generalized integrate-and-fire models in Part II of the book.

Before we can turn to the Hodgkin—Huxley equations, we need to give some additional
information on the equilibrium potential of ion channels.

2.1 Equilibrium potential

Neurons, just as other cells, are enclosed by a membrane which separates the interior of
the cell from the extracellular space. Inside the cell the concentration of ions is different
from that in the surrounding liquid. The difference in concentration generates an electrical
potential which plays an important role in neuronal dynamics. In this section, we pro-
vide some background information and give an intuitive explanation of the equilibrium
potential.
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Fig.2.1 (a) At thermal equilibrium, positive ions in an electric field will be distributed so that fewer
ions are in a state of high energy and more at low energy. Thus a voltage difference generates a gradi-
ent in concentration. (b) Similarly, a difference in ion concentration generates an electrical potential.
The concentration n; inside the neuron is different from the concentration n; of the surround. The
resulting potential is called the Nernst potential. The solid line indicates the cell membrane. Ions can
pass through the gap.

2.1.1 Nernst potential

From the theory of thermodynamics, it is known that the probability of a molecule taking
a state of energy E is proportional to the Boltzmann factor, p(E) o exp(—E /kT), where
k is the Boltzmann constant and 7' the temperature. Let us consider positive ions with
charge ¢ in a static electrical field. Their energy at location x is E(x) = qu(x) where u(x)
is the potential at x. The probability of finding an ion in the region around x is therefore
proportional to exp[—qu(x)/kT]. Since the number of ions is huge, we may interpret the
probability as an ion density. For ions with positive charge g > 0, the ion density is therefore
higher in regions with low potential u. Let us write n(x) for the ion density at point x. The
relation between the density at point x| and point x; is
n(x) _qu(x) —qu(x2)

) " T | 2.1)

A difference in the electrical potential Au = u(x;) — u(x,) generates therefore a difference
in ion density; see Fig. 2.1.

Since this is a statement about an equilibrium state, the reverse must also be true. A
difference in ion density generates a difference Au in the electrical potential. We consider
two regions of ions with concentration n; and n,, respectively; see Fig. 2.1b. Solving (2.1)
for Au we find that, at equilibrium, the concentration difference generates a voltage

o kT ny

Au=—In— 2.2)
q n

which is called the Nernst potential (Hille, 2001).
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2.1.2 Reversal potential

The cell membrane consists of a thin bilayer of lipids and is a nearly perfect electrical
insulator. Embedded in the cell membrane are, however, specific proteins which act as ion
gates. A first type of gate is the ion pumps, a second one is ion channels. Ion pumps actively
transport ions from one side to the other. As a result, ion concentrations in the intracellular
liquid differ from those of the surround. For example, the sodium concentration inside a
mammalian neuron (= 10 mM) is lower than that in the extracellular liquid (= 145 mM).
On the other hand, the potassium concentration inside is higher (=~ 140 mM) than in the
surround (= 5 mM) (Purves et al., 2008). For the giant axon of the squid which was studied
by Hodgkin and Huxley the numbers are slightly different, but the basic idea is the same:
there is more sodium outside the cell than inside, while the reverse is true for potassium.

Let us focus for the moment on sodium ions. At equilibrium the difference in concen-
tration causes a Nernst potential En, of about +67 mV. That is, at equilibrium the interior
of the cell has a positive potential with respect to the surround. The interior of the cell
and the surrounding liquid are in contact through ion channels where Na™ ions can pass
from one side of the membrane to the other. If the voltage difference Au is smaller than the
value of the Nernst potential Ey,, more Na™ ions flow into the cell so as to decrease the
concentration difference. If the voltage is larger than the Nernst potential ions would flow
out the cell. Thus the direction of the current is reversed when the voltage Au passes Eng-.
For this reason, Enj is called the reversal potential.

Example: Reversal potential for potassium

As mentioned above, the ion concentration of potassium is higher inside the cell
(= 140 mM) than in the extracellular liquid (= 5 mM). Potassium ions have a single
positive charge g = 1.6 x 10712 C. Application of the Nernst formula, (2.2), with the
Boltzmann constant k = 1.4 x 10723 J/K yields Ex ~ —83 mV at room temperature. The
reversal potential for K ions is therefore negative.

Example: Resting potential

So far we have considered the presence of either sodium or potassium. In real cells,
these and other ion types are simultaneously present and contribute to the voltage across
the membrane. It is found experimentally that the resting potential of the membrane is
about ugeg ~ 65mV. Since Ex < urest < ENa, potassium ions, at the resting potential,
flow out of the cell while sodium ions flow into the cell. In the stationary state, the
active ion pumps balance this flow and transport just as many ions back as pass through
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Fig. 2.2 Schematic diagram for the Hodgkin—Huxley model.

the channels. The value of u; is determined by the dynamic equilibrium between the
ion flow through the channels (permeability of the membrane) and active ion transport
(efficiency of the ion pump in maintaining the concentration difference).

2.2 Hodgkin—-Huxley model

Hodgkin and Huxley (1952) performed experiments on the giant axon of the squid and
found three different types of ion current, namely, sodium, potassium, and a leak current
that consists mainly of CI~ ions. Specific voltage-dependent ion channels, one for sodium
and another one for potassium, control the flow of those ions through the cell membrane.
The leak current takes care of other channel types which are not described explicitly.

2.2.1 Definition of the model

The Hodgkin—Huxley model can be understood with the help of Fig. 2.2. The semiperme-
able cell membrane separates the interior of the cell from the extracellular liquid and acts
as a capacitor. If an input current /(¢) is injected into the cell, it may add further charge on
the capacitor, or leak through the channels in the cell membrane. Each channel type is rep-
resented in Fig. 2.2 by a resistor. The unspecific channel has a leak resistance R, the sodium
channel a resistance Ry, and the potassium channel a resistance Rx. The diagonal arrow
across the diagram of the resistor indicates that the value of the resistance is not fixed, but
changes depending on whether the ion channel is open or closed. Because of active ion
transport through the cell membrane, the ion concentration inside the cell is different from
that in the extracellular liquid. The Nernst potential generated by the difference in ion con-
centration is represented by a battery in Fig. 2.2. Since the Nernst potential is different for
each ion type, there are separate batteries for sodium, potassium, and the unspecific third
channel, with battery voltages En,, Ex and Ep , respectively.

Let us now translate the above schema of an electrical circuit into mathematical equa-
tions. The conservation of electric charge on a piece of membrane implies that the applied
current I(¢) may be split into a capacitive current Ic which charges the capacitor C and
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Fig. 2.3 The Hodgkin—Huxley model. (a) The equilibrium functions for the three variables m,n, h
in the Hodgkin—Huxley model. (b) The voltage-dependent time constant. The resting potential is
at u = —65mV (arrow) and parameters are those given in Table 2.1.

further components ; which pass through the ion channels. Thus

=Ic(t -‘erk (2.3)

where the sum runs over all ion channels. In the standard Hodgkin—Huxley model there
are only three types of channel: a sodium channel with index Na, a potassium channel
with index K and an unspecific leakage channel with resistance R; see Fig. 2.2. From the
definition of a capacity C = ¢/u where ¢ is a charge and u the voltage across the capacitor,
we find the charging current Ic = Cdu/dr. Hence from (2.3)

of:—zh 2.4)

In biological terms, u is the voltage across the membrane and Y I is the sum of the ionic
currents which pass through the cell membrane.

As mentioned above, the Hodgkin—Huxley model describes three types of channel. All
channels may be characterized by their resistance or, equivalently, by their conductance.
The leakage channel is described by a voltage-independent conductance g;, = 1/R. Since u
is the total voltage across the cell membrane and Ey, the voltage of the battery, the voltage
at the leak resistor in Fig. 2.2 is u — Ep.. Using Ohm’s law, we get a leak current It =
gL (u—Er).

The mathematics of the other ion channels is analogous except that their conductance is
voltage- and time-dependent. If all channels are open, they transmit currents with a max-
imum conductance gn, or gk, respectively. Normally, however, some of the channels are
blocked. The breakthrough of Hodgkin and Huxley was that they succeeded in measur-
ing how the effective resistance of a channel changes as a function of time and voltage.
Moreover, they proposed a mathematical description of their observations. Specifically,
they introduced additional “gating” variables m,n and & to model the probability that a
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Table 2.1 Parameters for the Hodgkin—Huxley equations fitted on pyramidal neurons of
the cortex. The parameters for n and m were fitted by Zach Mainen (Mainen et al., 1995)
on experiments reported by Huguenard et al. (1988) and the parameters for h by Richard
Naud on the experiments reported in Hamill et al. (1991). Voltage is measured in mV and
the membrane capacity is C = 1;1F/cm2.

channel is open at a given moment in time. The combined action of m and & controls the
Na™ channels while the K* gates are controlled by n. For example, the effective conduc-
tance of sodium channels is modeled as 1 /Ry, = gna m? h, where m describes the activation
(opening) of the channel and # its inactivation (blocking). The conductance of potassium
is 1/Rg = gk n*, where n describes the activation of the channel.

In summary, Hodgkin and Huxley formulated the three ion currents on the right-hand-
side of (2.4) as

ZIk gnam>h (u— Eng) + gxn® (u— Ex) + gL (u— EL). (2.5)

The parameters Eny, Ex, and Ep, are the reversal potentials.
The three gating variables m, n, and h evolve according to differential equations of the

form

) 1
A== Tx( )[X XO( )} (2.6)

with x = dx/dt, and where x stands for m, n, or h. The interpretation of (2.6) is simple: for a
fixed voltage u, the variable x approaches the target value xo(u) with a time constant 7, (u).
The voltage dependence of the time constant and asymptotic value is illustrated in Fig. 2.3.
The form of the functions plotted in Fig. 2.3, as well as the maximum conductances
and reversal potentials in (2.5), were deduced by Hodgkin and Huxley from empirical
measurements.

Example: Voltage step

Experimenters can hold the voltage across the cell membrane at a desired value by
injecting an appropriate current into the cell. Suppose that the experimenter keeps the
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Fig. 2.4 Original data and fit of

= Hodgkin and Huxley (1952). The
t':; measured time course of the potassium
l conductance (circles) after application
of a voltage step of 25mV and after
| return to resting potential. The fit (solid
0 f[ms] 10 line) is based on Eq. (2.8). Adapted
from Hodgkin and Huxley (1952).
cell at resting potential ug = —65mV for ¢ < 79 and switches the voltage at 7y to a new

value u;. Integration of the differential equation (2.6) gives, for ¢ > 1y, the dynamics

)

)= )+ ) -t | L

h(r) = ho(u1) + [o(u0) — ho(u1)] exp [_T(h’(;l’;))] : @2.7)

so that, based on the model with given functions for mq(u), ho(u), Tn (1), Ty(u), we can
predict the sodium current I, (¢) = gna [m(¢)3] h(t) (u — Ena) for t >ty generated by the
voltage step at t = fp.

Similarly, the potassium current caused by a voltage step is Ix(f) = g [n(t)*] (u; —
EK) with

n(t) = no(uy) + [no(uo) — no(u1)] exp [ (2.8)

Tn(ul)
Hodgkin and Huxley used Egs. (2.7) and (2.8) to work the other way round. After
blocking the sodium channel with appropriate pharmacological agents, they applied
a voltage step and measured the time course of the potassium current. Dividing the
recorded current through the driving potential (1; — Ex) yields the time-dependent con-
ductance gx [n(¢)*]; see Fig. 2.4. Using (2.8), Hodgkin and Huxley deduced the value
of no(u;) and 7,(u;) as well as the exponent of 4 in n*(¢) for potassium. Repeating the
experiments for different values u; gives the experimental curves for no(u) and 7, (u).

Example: Activation and de-inactivation

The variable m is called an activation variable. To understand this terminology, we
note from Fig. 2.3 that the value of mg(u) at the neuronal resting potential of u =
—65mV is close to zero. Therefore, at rest, the sodium current Iny = gNa m3h (u— Ena)
through the channel vanishes. In other words, the sodium channel is closed.

When the membrane potential increases significantly above the resting potential, the
gating variable m increases to its new value m(u). As long as h does not change, the
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sodium current increases and the gate opens. Therefore the variable m “activates” the
channel. If, after a return of the voltage to rest, m decays back to zero, it is said to be
“de-activating.”

The terminology of the “inactivation” variable % is analogous. At rest, # has a large
positive value. If the voltage increases to a value above —40 mV, h approaches a new
value ho(u) which is close to rest. Therefore the channel “inactivates” (blocks) with a
time constant that is given by 7, (u). If the voltage returns to zero, & increases so that the
channel undergoes “de-inactivation.” This sounds like tricky vocabulary, but it turns out
to be useful to distinguish between a deactivated channel (m close to zero and # close to
1) and an inactivated channel (/4 close to zero).

2.2.2 Stochastic channel opening

The number of ion channels in a patch of membrane is finite, and individual ion channels
open and close stochastically. Thus, when an experimenter records the current flowing
through a small patch of membrane, he does not find a smooth and reliable evolution of the
measured variable over time but rather a highly fluctuating current, which looks different
at each repetition of the experiment (Fig. 2.5).

The Hodgkin—Huxley equations, which describe the opening and closing of ion channels
with deterministic equations for the variables m, h, and n, correspond to the current density
through a hypothetical, extremely large patch of membrane containing an infinite number
of channels or, alternatively, to the current through a small patch of membrane but averaged
over many repetitions of the same experiment (Fig. 2.5). The stochastic aspects can be
included by adding appropriate noise to the model.
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Example: Time constants, transition rates, and channel kinetics

As an alternative to the formulation of channel gating in Eq. (2.6), the activation and
inactivation dynamics of each channel type can also be described in terms of voltage-
dependent transition rates o and f3,

1 = () (1 —m) — B (u)m,
n=0,(u)(1—n)—Bu(u)n, 2.9
h = o (u) (1= h) — By () h.

The two formulations Egs. (2.6) and (2.9) are equivalent. The asymptotic value xo(«) and
the time constant 7,(«) are given by the transformation xo(u) = ot (u) /[0 (1) + B (u4)]
and 7, (u) = [0 (u) + B (u)]~". The various functions & and 3, given in Table 2.1, are
empirical functions of u that produce the curves in Fig. 2.3.

Equations (2.9) are typical equations used in chemistry to describe the stochastic
dynamics of an activation process with rate constants o and 3. We may interpret this pro-
cess as a molecular switch between two states with voltage-dependent transition rates.
For example, the activation variable n can be interpreted as the probability of finding
a single potassium channel open. Therefore in a patch with K channels, k ~ (1 —n)K
channels are expected to be closed. We may interpret o, (u)Ar as the probability that in a
short time interval At one of the momentarily closed channels switches to the open state.

2.2.3 Dynamics

In this section we study the dynamics of the Hodgkin—Huxley model for different types of
input. Pulse input, constant input, step current input, and time-dependent input are consid-
ered in turn. These input scenarios have been chosen so as to provide an intuitive under-
standing of the dynamics of the Hodgkin—Huxley model.

The most important property of the Hodgkin—Huxley model is its ability to generate
action potentials. In Fig. 2.6a an action potential has been initiated by a short current pulse
of 1 ms duration applied at + = 1 ms. The spike has an amplitude of nearly 100 mV and
a width at half maximum of about 2.5 ms. After the spike, the membrane potential falls
below the resting potential and returns only slowly back to its resting value of —65 mV.

Ion channel dynamics during spike generation

In order to understand the biophysics underlying the generation of an action potential we
return to Fig. 2.3a. We find that mg and n( increase with u whereas hy decreases. Thus,
if some external input causes the membrane voltage to rise, the conductance of sodium
channels increases due to increasing m. As a result, positive sodium ions flow into the cell
and raise the membrane potential even further. If this positive feedback is large enough,
an action potential is initiated. The explosive increase comes to a natural halt when the
membrane potential approaches the reversal potential Ex, of the sodium current.
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Fig. 2.6 (a) Action potential. The Hodgkin—Huxley model is stimulated by a short, but strong, cur-
rent pulse between f = 1 ms and r = 2 ms. The time course of the membrane potential u(t) forz >2ms
shows the action potential (positive peak) followed by a relative refractory period where the potential
is below the resting potential urg (dashed line). The right panel shows an expanded view of the
action potential between r =2 ms and t = 5 ms. (b) The dynamics of gating variables m, h, n illustrate
how the action potential is mediated by sodium and potassium channels. (c) The sodium current In,
which depends on the variables m and 4 has a sharp peak during the upswing of an action potential.
The potassium current Ik is controlled by the variable n and starts with a delay compared with Inj,.

At high values of u the sodium conductance is slowly shut off due to the factor 4. As
indicated in Fig. 2.3b, the “time constant” 7, is always larger than 7,,. Thus the variable &
which inactivates the channels reacts more slowly to the voltage increase than the variable
m which opens the channel. On a similar slow time scale, the potassium (K') current
sets in Fig. 2.6¢. Since it is a current in outward direction, it lowers the potential. The
overall effect of the sodium and potassium currents is a short action potential followed by
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Fig. 2.7 (a) Spike train of the Hodgkin—Huxley model (with the parameters used in this book) for
constant input current /. (b) Gain function. The mean firing rate v is plotted as a function of /. The
gain function of the Hodgkin—Huxley model is of type II, because it exhibits a jump. (c) Same as (a),
but for the original parameters found by Hodgkin and Huxley to describe the ion currents in the giant
axon of the squid. (d) Gain function for the model in (c).

a negative overshoot; see Fig. 2.6a. The negative overshoot, called hyperpolarizing spike-
afterpotential, is due to the slow de-inactivation of the sodium channel, caused by the
h-variable.

Example: Mean firing rates and gain function

The Hodgkin—Huxley equations (2.4)—(2.9) may also be studied for constant input
I(t) = Ip for t > 0. (The input is zero for r < 0.) If the value Iy is larger than a critical
value Iy ~ 2.7 pA/cm?, we observe regular spiking; see Fig. 2.7a. We may define a firing
rate v = 1/T where T is the interspike interval.

The firing rate as a function of the constant input Iy, often called the “frequency—
current” relation or “f—I plot,” defines the gain function plotted in Fig. 2.7b. With the
parameters given in Table 2.1, the gain function exhibits a jump at Iy. Gain functions
with a discontinuity are called “type I1.”
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Fig. 2.8 (a) Spike train of the Hodgkin—Huxley model driven by a time-dependent input cur-
rent. The action potentials occur irregularly. The figure shows the voltage u as a function of time.
(b) Threshold effect. A short current pulse of 1 ms is applied which leads to a excursion of the mem-
brane potential of a few millivolts (dashed line). A slight increase of the strength of the current pulse
leads to the generation of an action potential (solid line) with an amplitude of about 100 mV above
rest (out of bounds).

If we shift the curve of the inactivation variable ~ to more positive voltages, and
keep the same parameters otherwise, the modified Hodgkin—Huxley model exhibits a
smooth gain function; see Section 2.3.2 and Fig. 2.11. Neuron models or, more gener-
ally, “excitable membranes” are called “type I’ or “class I” if they have a continuous
frequency—current relation. The distinction between the excitability of type I and II can
be traced back to Hodgkin (1948).

Example: Stimulation by time-dependent input

In order to explore a more realistic input scenario, we stimulate the Hodgkin—Huxley
model by a time-dependent input current /(z) that is generated by the following pro-
cedure. Every 2 ms, a random number is drawn from a Gaussian distribution with zero
mean and standard deviation 6 = 34 uA/cm?. To get a continuous input current, a linear
interpolation was used between the target values. The resulting time-dependent input
current was then applied to the Hodgkin—Huxley model (2.4)—(2.6). The response to
the current is the voltage trace shown in Fig. 2.8a. Note that action potentials occur at
irregular intervals.

Example: Firing threshold

In Fig. 2.8b an action potential (solid line) has been initiated by a short current pulse
of 1 ms duration. If the amplitude of the stimulating current pulse is reduced below some
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critical value, the membrane potential (dashed line) returns to the rest value without a
large spike-like excursion; see Fig. 2.8b. Thus we have a threshold-type behavior.

If we increased the amplitude of the current by a factor of 2, but reduced the duration
of the current pulse to 0.5 ms, so that the current pulse delivers exactly the same electric
charge as before, the response curves in Fig. 2.8b would look exactly the same. Thus, the
threshold of spike initiation can not be defined via the amplitude of the current pulse.
Rather, it is the charge delivered by the pulse or, equivalently, the membrane voltage
immediately after the pulse, which determines whether an action potential is triggered or
not. However, while the notion of a voltage threshold for firing is useful for a qualitative
understanding of spike initiation in response to current pulses, it is in itself not sufficient
to capture the dynamics of the Hodgkin—Huxley model; see the discussion in this and
the next two chapters.

Example: Refractoriness

In order to study neuronal refractoriness, we stimulate the Hodgkin—Huxley model by
a first current pulse that is sufficiently strong to excite a spike. A second current pulse
of the same amplitude as the first one is used to probe the responsiveness of the neuron
during the phase of hyperpolarization that follows the action potential. If the second
stimulus is not sufficient to trigger another action potential, we have a clear signature
of neuronal refractoriness. In the simulation shown in Fig. 2.9, a second spike is not
emitted if the second stimulus is given less than 40 ms after the first one. It would, of
course, be possible to trigger a second spike after a shorter interval, if a significantly
stronger stimulation pulse was used; for classical experiments along those lines (see,
e.g., Fuortes and Mantegazzini 1962).

If we look more closely at the voltage trajectory of Fig. 2.9, we see that neuronal
refractoriness manifests itself in two different forms. First, owing to the hyperpolarizing
spike-afterpotential, the voltage is lower. More stimulation is therefore needed to reach
the firing threshold. Second, since a large portion of channels are open immediately
after a spike, the resistance of the membrane is reduced compared with the situation
at rest. The depolarizing effect of a stimulating current pulse therefore decays faster
immediately after the spike than 10 ms later. An efficient description of refractoriness
plays a major role in simplified neuron models discussed in Chapter 6.

Example: Damped oscillations and transient spiking

When stimulated with a small step-increase in current, the Hodgkin—Huxley model
with parameters as in Table 2.1 exhibits a damped oscillation with a maximum of about
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Fig. 2.9 Refractoriness of the Hodgkin—Huxley model. At # = 20 ms the model is stimulated by a
short current pulse (left arrow) so as to trigger an action potential. A second current pulse of the
same amplitude applied at = 35,45, or 55ms (subsequent arrows) is not sufficient to trigger a
second action potential.

20 ms after the onset of the current step; see Fig. 2.10. If the step size is large enough,
but not sufficient to cause sustained firing, a single spike can be generated. Note that in
Fig. 2.10 the input current returns at 200 ms to the same value it had a hundred millisec-
onds before. While the neuron stays quiescent after the first step, it fires a transient spike
the second time not because the total input is stronger but because the step starts from a
strong negative value.

A spike which is elicited by a step current that starts from a strong negative value and
then switches back to zero would be called a rebound spike. In other words, a rebound
spike is triggered by release from inhibition. For example, the Hodgkin—Huxley model
with the original parameters for the giant axon of the squid exhibits rebound spikes
when a prolonged negative input current is stopped; the model with the set of parameters
adopted in this book, however, does not.

The transient spike in Fig. 2.10 occurs about 20 ms after the start of the step. A simple
explanation of the transient spike is that the peak of the membrane potential oscillation
after the step reaches the voltage threshold for spike initiation, so that a single action
potential is triggered. It is indeed the subthreshold oscillations that underly the transient
spiking illustrated in Fig. 2.10.

Damped oscillations result from subthreshold inactivation of the sodium current. At
rest the sodium currents are not activated (m ~ 0) but only partially inactivated (k2 ~ 0.6).
Responding to the step stimulus, the membrane potential increases, which activates
slightly and de-inactivates slowly the sodium channel. When the input is not strong
enough for an action potential to be initiated, the de-inactivation of Iy, reduces the effec-
tive drive and thus the membrane potential. The system then relaxes to an equilibrium.
If, on the other hand, the current was strong enough to elicit a spike, the equilibrium may
be reached only after the spike. A further increase in the step current drives sustained
firing (Fig. 2.10).
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2.3 The zoo of ion channels

Hodgkin and Huxley used their equations to describe the electrophysiological properties
of the giant axon of the squid. These equations capture the essence of spike generation
by sodium and potassium ion channels. The basic mechanism of generating action poten-
tials is a short influx of sodium ions that is followed by an efflux of potassium ions. This
mechanism of spike generation is essentially preserved in higher organisms, so that, with
the choice of parameters given in Table 2.1, we already have a first approximate model of
neurons in vertebrates. With a further change of parameters we could adapt the model
equations to different temperatures to account for the fact that neurons at 37 degrees
Celsius behave differently than neurons in a lab preparation held at a room temperature
of 21 degrees Celsius.

However, in order to account for the rich biophysics observed in the neurons of the verte-
brate nervous system, two types of ion channel are not enough. Neurons come in different
types and exhibit different electrical properties which in turn correspond to a large variety
of ion channels. Today, about 200 ion channels are known and many of these have been
identified genetically (Ranjan er al., 2011). In experimental laboratories where the bio-
physics and functional role of ion channels are investigated, specific ion channel types can
be blocked through pharmacological manipulations. In order to make predictions of block-
ing results, it is important to develop models that incorporate multiple ion channels. As
we shall see below (Section 2.3.1), the mathematical framework of the Hodgkin—Huxley
model is well suited for such an endeavor.

For other scientific questions, we may be interested only in the firing pattern of neurons
and not in the biophysical mechanisms that give rise to it. Later, in Part II of this book,
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we will show that generalized integrate-and-fire models can account for a large variety of
neuronal firing patterns (Chapter 6) and predict spike timings of real neurons with high
precision (Chapter 11). Therefore, in Parts III and IV of the book, where we focus on large
networks of neurons, we mainly work with generalized integrate-and-fire rather than bio-
physical models. Nevertheless, biophysical models, i.e., Hodgkin—Huxley equations with
multiple ion channels, serve as an important reference.

2.3.1 Framework for biophysical neuron models

The formalism of the Hodgkin—Huxley equation is extremely powerful, because it enables
researchers to incorporate known ion channel types into a given neuron model. Just as
before, the electrical properties of a patch of neuronal membrane are described by the
conservation of current

C% ==Y L(t)+1(t), (2.10)
! k

but in contrast to the simple Hodgkin—Huxley model discussed in the previous section, the
right-hand side now contains all types of ion current found in a given neuron. For each ion
channel type k, we introduce activation and inactivation variables

(1) = ge([Ca™ ], .. )mPe h (u— Ey), @.11)

where m and & describe activation and inactivation of the channel with equations analogous
to (2.6), py and gy are empirical parameters, Ey, is the reversal potential, and g is the max-
imum conductance which may depend on secondary variables such as the concentration of
calcium, magnesium, dopamine or other substances. In principle, if the dynamics of each
channel type (i.e., all parameters that go into Egs. (2.11) and (2.6)) are available, then one
needs only to know which channels are present in a given neuron in order to build a bio-
physical neuron model. Studying the composition of messenger RNA in a drop of liquid
extracted from a neuron gives a strong indication of which ion channels are present in a
neuron, and which are not (Toledo-Rodriguez et al., 2004). The relative importance of ion
channels is not fixed, but depends on the age of neuron as well as other factors. Indeed,
a neuron can tune its spiking dynamics by regulating its ion channel composition via a
modification of the gene expression profile.

Ion channels are complex transmembrane proteins which exist in many different forms.
It is possible to classify an ion channel using (i) its genetic sequence; (ii) the ion type
(sodium, potassium, calcium, ...) that can pass through the open channel; (iii) its voltage
dependence; (iv) its sensitivity to second-messengers such as intracellular calcium; (v) its
presumed functional role; (vi) its response to pharmacological drugs or to neuromodulators
such as acetylcholine and dopamine.

Using a notation that mixes the classification schemes (i)—(iii), geneticists have dis-
tinguished multiple families of voltage-gated ion channels on the basis of similarities in
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the amino acid sequences. The channels are labeled with the chemical symbol of the ion
of their selectivity, one or two letters denoting a distinct characteristic and a number to
determine the subfamily. For instance “Kv5” is the fifth subfamily of the voltage-sensitive
potassium channel family “Kv”. An additional number may be inserted to indicate the
channel isoforms, for instance “Nav1.1” is the first isoform that was found within the first
subfamily of voltage-dependent sodium channels. Sometimes a lower-case letter is used
to point to the splice variants (e.g., “Navl.1a”). Strictly speaking, these names apply to a
single cloned gene which corresponds to a channel subunit, whereas the full ion channel
is composed of several subunits usually from a given family but possibly from different
subfamilies.

Traditionally, electrophysiologists have identified channels with subscripts that reflect a
combination of the classification schemes (ii)—(vi). The index of the potassium “M-current”
Iy points to its response to pharmacological stimulation of Muscarinic (M) acetylcholine
receptors. Another potassium current, /app, shapes the after-hyperpolarization (AHP) of
the membrane potential after a spike. Thus the subscript corresponds to the presumed func-
tional role of the channel. Sometimes the functionally characterized current can be related
to the genetic classification; for instance Iagp is a calcium-dependent potassium channel
associated with the small-conductance “SK” family, but in other cases the link between an
electrophysiologically characterized channel and its composition in terms of genetically
identified subunits is still uncertain. Linking genetic expression with a functionally char-
acterized ion current is a fast-expanding field of study (Ranjan et al., 2011).

In this section we select a few examples from the zoo of ion channels and illustrate how
ion channels can modify the spiking dynamics. The aim is not to quantitatively specify
parameters of each ionic current as this depends heavily on the genetic expression of the
subunits, cell type, temperature and neurotransmitters. Rather, we would like to explore
qualitatively the influence of ion channel kinetics on neuronal properties. In other words,
let us bring the zoo of ion channels to the circus and explore the stunning acts that can be
achieved.

2.3.2 Sodium ion channels and the type-I regime

The parameters of the Hodgkin—Huxley model in Table 2.1 relate to only one type of
sodium and potassium ion channel. There are more than 10 different types of sodium chan-
nels, each with a slightly different activation and inactivation profile. However, as we shall
see, even a small change in the ion channel kinetics can profoundly affect the spiking
characteristics of a neuron.

Let us consider a sodium ion channel which has its inactivation curve ho(u) (Fig. 2.3a)
shifted to depolarized voltages by 20 mV compared with the parameters in Table 2.1. With
maximal conductances gn, = 25 nS/cm? and gk =40 nS/cm?, the dynamics of a neuron
with this modified sodium channel (Fig. 2.11) is qualitatively different from that of a neu-
ron with the parameters as in Table 2.1 (Figs. 2.7 and 2.10).
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Fig. 2.11 A modification of sodium channel kinetics leads to different neuronal dynamics.
(a) Response of a model with modified sodium channel to current steps of different amplitudes.
(b) Delayed spike initiation. A short current pulse of 2 ms duration is applied at r = 8 ms. The action
potential that is elicited in response to the current pulse is shown for decreasing pulse amplitudes
(1=6.25,5.90,5.88 uA/cmz). Note that the action potential can occur more than 10 ms after the end
of the current pulse.
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Fig. 2.12 Type-I regime with a modified sodium current. (a) Regular spiking response to constant
input. (b) Firing frequency as a function of the constant current.

First, the neuron with the modified sodium dynamics shows no damped oscillations in
response to a step input (Fig. 2.11a). Second, the neuron responds to a short current pulse
which is just slightly above the firing threshold with a delayed action potential (Fig. 2.11b).
Third, during regular spiking the shape of the action potential is slightly different in the
model with the modified sodium channel (Fig. 2.12a). In particular, the membrane poten-
tial between the spikes exhibits an inflection point, unlike the spike train with the origi-
nal set of parameters (Fig. 2.7a). Finally, the gain function (frequency—current plot) has
no gap so that the neuron model can fire at arbitrarily small frequencies (Fig. 2.12b). If
we compare this f—I plot with the gain function of the neuron with parameters from Table



46 The Hodgkin—Huxley Model

2.1, we can distinguish two types of excitability: type I has a continuous input—output
function (Fig. 2.12b), while type II has a discontinuity (Fig. 2.7b).

2.3.3 Adaptation and refractoriness

We have seen in Section 2.2 that the combination of sodium and potassium channels gen-
erates spikes followed by a relative refractory period. The refractoriness is caused by the
slow return of the sodium inactivation variable & and the potassium activation variable n to
their equilibrium values. The time scale of recovery in the Hodgkin—Huxley model, with
parameters as in Table 2.1, is 4 ms for the potassium channel activation and 20 ms for the
sodium channel inactivation. Other ion channel types, not present in the original Hodgkin—
Huxley model, can affect the recovery process on much longer time scales and lead to
spike-frequency adaptation: after stimulation with a step current, interspike intervals get
successively longer. The basic mechanism of adaptation is the same as that of refractori-
ness: either a hyperpolarizing current is activated during a spike (and slowly de-activates
thereafter) or a depolarizing current is inactivated during a spike and de-inactivates on a
much slower time scale.

Example: Slow inactivation of a hyperpolarizing current

Let us start with the muscarinic potassium channel /yj, often called M-current. Genet-
ically, the channel is composed of subunits of the Kv7 family. Figure 2.13a,b show the
activation function as well as the voltage dependence of the time constant as charac-
terized by Yamada et al. (1989). The activation function (Fig. 2.13a) tells us that this
channel tends to be activated at voltages above 40 mV and is de-activated below 40 mV
with a very sharp transition between the two regimes. Since 40 mV is well above the
threshold of spike initiation, the membrane potential is never found above 40 mV except
during the 1-2 ms of a spike. Therefore the channel partially activates during a spike
and, after the end of the action potential, de-activates with a time constant of 40—60 ms
(Fig. 2.13b). The slow deactivation of this potassium channel affects the time course
of the membrane potential after a spike. Compared with the original Hodgkin—Huxley
model, which has only the two currents specified in Table 2.1, a model with an addi-
tional Iy; current exhibits a prolonged hyperpolarizing spike-afterpotential and therefore
a longer relative refractory period (Fig. 2.13c—e).

In the regular firing regime, it is possible that the M-current caused by a previous
spike is still partially activated when the next spike is emitted. The partial activation
can therefore accumulate over successive spikes. By cumulating over spikes, the acti-
vation of Iy gradually forces the membrane potential away from the threshold, increas-
ing the interspike interval. This results in a spiking response that appears to “adapt”
to a step input, hence the name “spike-frequency adaptation” or simply “adaptation”
(Fig. 2.13c—e).
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Fig. 2.13 Spike-frequency adaptation with ;. (a) Voltage dependence of the stationary value
of the activation variable m and (b) its time constants for the muscarinic potassium current
Iv = gmm (u— Ey) extracted from experimental observations (Yamada et al., 1989). (c) Voltage
response to the current shown in (d) of the original Hodgkin—Huxley model with parameters from
Table 2.1 (dashed line) and a model which also contains the Iy channel. The model with Iy exhibits
adaptation. (e) Progressive activation of the potassium current /y; during the repetitive spiking period
shown in (c).
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Example: A-current

Another potassium ion channel with kinetics similar to Iy is I4, but qualitatively dif-
ferent effects: 74 makes the relative refractory period longer and stronger without causing
much adaptation. To see the distinction between I4 and Ij;, we compare the activation
kinetics of both channels (Figs. 2.13b and 2.14b). The time constant 7,, of activation is
much faster for I than for Ij;. This implies that the A-current increases rapidly during
the short time of the spike and decays quickly afterward. In other words, the effect of
14 is short and strong whereas the effect of /; is long and small. Because the effect of
14 does not last as long, it contributes to refractoriness, but only very little to spike fre-
quency adaptation (Fig. 2.14c—e). Even though an inactivation process, with variable 4,
was reported for Iy, its time constant 7y, is so long (>150 ms) that it does not play a role
in the above arguments.

Example: Slow extrusion of calcium

Multiple ion channel families contribute to spike-frequency adaptation. In contrast to
the direct action of Iy, the calcium-dependent potassium channel /i [c,) generates adapta-
tion indirectly via its dependence on the intracellular calcium concentration. During each
spike, calcium enters through the high-threshold calcium channel /gya. As calcium accu-
mulates inside the cell, the calcium-dependent potassium channel /¢, gradually opens,
lowers the membrane potential, and makes further spike generation more difficult. Thus,
the level of adaptation can be read out from the intracellular calcium concentration.

In order to understand the accumulation of calcium, we need to discuss the high-
threshold calcium channel Igva. Since it activates above —40 mV to —30 mV, the chan-
nel opens during a spike. Its dynamics is therefore similar to that of the sodium cur-
rent, but the direct effect of Iyya on the shape of the spike is small. Its main role is
to deliver a pulse of calcium ions into the neuron. The calcium ions have an important
role as second-messengers; they can trigger various cascades of biophysical processes.
Intracellular calcium is taken up by internal buffers, or slowly pumped out of the cell,
leading to an intricate dynamics dependent on the properties of calcium buffers and
calcium pumps. For small calcium transients, however, or when the calcium pump has
high calcium affinity and slow extrusion rate, the intracellular calcium dynamics follow
(Helmchen et al., 2011)

d[Ca]
dr
where [Ca] denotes the intracellular calcium concentration, I, is the sum of currents

coming from all calcium ion channels, ¢c, is a constant that scales the ionic current to
changes in ionic concentration, [Ca] is a baseline intracellular calcium concentration,

= ¢calca+ 7, ([Ca] — [Calp), (2.12)
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Fig. 2.14 I, and the refractory period. (a) Voltage dependence of the stationary values and (b) time
constants of the activation variable m and inactivation variable % for the A-type potassium current
In = gamh(u— Eg) extracted from experimental observations in pyramidal neurons of the cortex
(Korngreen and Sakmann, 2000). (c) Voltage response to the current shown in (d), consisting of a
single pulse and a step. (e) Progressive activation (solid line) and inactivation (dashed line) of the
potassium current /5 during the stimulation shown in (c) and (d).
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Fig.2.15 Calcium-based spike-frequency adaptation with /g |c,) and Iigva. (a) Voltage dependence of
the stationary values. (b) Time constants of the activation variable m and inactivation variable & of the
high-threshold calcium current Iyya = g hm (u — Ec,) extracted from experiments (Reuveni e al.,
1993). (c) Voltage response of a Hodgkin—Huxley model with the calcium current /iyya (dashed line)
and a model that also contains a calcium-dependent potassium current /g[c,). (d) External current
used for the simulation in (c) and (e). (e) Progressive accumulation of intracellular calcium in the
two models.
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and 7Tc, is the effective time constant of calcium extrusion. In our simple example the
sole source of incoming calcium ions is the high-threshold calcium channel hence Ic, =
Inva. Because of the short duration of the spike, each spike adds a fixed amount of
intracellular calcium which afterward decays exponentially (Fig. 2.15¢), as observed in
many cell types (Helmchen et al., 2011).

The calcium-dependent potassium channel Ix(c, = gkjca) 7 (4 — Ex) is weakly sensi-
tive to the membrane potential but highly sensitive to intra cellular calcium concentra-
tion. The dynamics of activation can be modeled with a calcium-dependent time constant
(Destexhe et al., 1994a) of the activation variable n

k3
w(C) = o 2.13)
and a stationary value (Destexhe et al., 1994a)
kzekl [C‘d]
ny = 1o rohical T el (2.14)

where ki, kz, k3, and gg|c,) are constants.

Figure 2.15 shows the effect of the combined action of calcium channel and Ix|c,). A
single spike generates a transient increase in intracellular calcium which in turn causes
a transient increase in Ig|c,) activation which results in a hyperpolarization of the mem-
brane potential compared with a model without /i [c,). During sustained stimulation, cal-
cium accumulates over several spikes, so that the effect of Ix|c,) becomes successively
larger and interspike intervals increase. The time constant associated with adaptation is
a combination of the calcium extrusion time constant and the potassium activation and
de-activation time constant.

Example: Slow de-inactivation of a persistent sodium channel

The stationary values of activation and inactivation of the persistent sodium channel
Ingp (Fig. 2.16a) are very similar to that of the normal sodium channel of the Hodgkin—
Huxley model. The main difference lies in the time constant. While activation of the
channel is quick, it inactivates on a much slower time scale. Hence the name: the current
“persists”. The time constant of the inactivation variable 4 is of the order of a second.

During sustained stimulation, each spike contributes to the inactivation of the sodium
channel and therefore reduces the excitability of the neuron. This special type of refrac-
toriness is not visible in the spike-afterpotential, but can be illustrated as a relative
increase in the effective spiking threshold (Fig. 2.16b). Since, after a first spike, the
sodium channel is partially inactivated, it becomes more difficult to make the neuron
fire a second time.
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Fig. 2.16 The persistent sodium channel In,p increases the firing threshold. (a) Activation and inac-
tivation profiles for INap = gNapmh (4 — ENa). Activation is fast (a few ms) whereas inactivation is of
the order of a second as measured in pyramidal neurons of the cortex (Aracri et al., 2006). (b) Slow
inactivation affects the effective threshold. In a Hodgkin—Huxley model with persistent sodium cur-
rent, subthreshold current pulses are injected at different moments (arrows). At ¢ = 75 ms (asterisk)
only, a suprathreshold stimulation was applied. Tuning the strength of the other current pulses so that
they are just below spike initiation reveals an effective voltage threshold (dashed line) that is higher
immediately after the first spike.

2.3.4 Subthreshold effects

Some ion channels have an activation profile mo(«) which has a significant slope well
below the spike initiation threshold. During subthreshold activation of the cell by back-
ground activity in vivo, or during injection of a fluctuating current, these currents partially
activate and inactivate, following the time course of membrane potential fluctuations and
shaping them in turn.

We describe two examples of subthreshold ion channel dynamics. The first one illus-
trates adaptation to a depolarized membrane potential by inactivation of a depolarizing
current, which results in a subsequent reduction of the membrane potential. The second
example illustrates the opposite behavior: in response to a depolarized membrane poten-
tial, a depolarizing current is triggered which increases the membrane potential even fur-
ther. The two examples therefore correspond to subthreshold adaptation and subthreshold
facilitation, respectively.

Example: Subthreshold adaptation by 7,

Subthreshold adaptation through a hyperpolarization-activated current [, is present in
many cell classes. As the name implies, the current is activated only at hyperpolarized
voltages as can be seen in Fig. 2.17a. Thus, the voltage dependence of the activation
variable is inverted compared with the normal case and has negative slope. Therefore, the
activation variable looks more like an inactivation variable and this is why we choose &
as the symbol for the variable. The channel is essentially closed for prolonged membrane
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Fig. 2.17 Subthreshold adaptation with 7;,. (a) Stationary values and (b) time constants of the vari-
able h controlling the hyperpolarization-activated mixed current [, as measured in pyramidal neurons
of the hippocampus (Magee, 1998).

potential fluctuations above —30 mV. The [, current is a non-specific cation current,
meaning that sodium, potassium, and calcium can pass through the 7, channel when it
is open. The reversal potential of this ion channel is usually around —45mV so that
the h-current I, = g, h(u— Ej) is depolarizing at resting potential and over most of the
subthreshold regime.

The presence of [, causes the response to step changes in input current to exhibit
damped oscillations. The interaction works as follows: suppose an external driving cur-
rent depolarizes the cell. In the absence of ion channels this would lead to an exponential
relaxation to a new value of the membrane potential of, say, —50 mV. Since /, was mildly
activated at rest, the membrane potential increase causes the channel to de-activate. The
gradual closure of I, removes the effective depolarizing drive and the membrane poten-
tial decreases, leading to a damped oscillation (as in Fig. 2.10). This principle can also
lead to a rebound spike as seen in Fig. 2.10. Subthreshold adaptation and damped oscil-
lations will be treated in more detail in Chapter 6.

Example: Subthreshold facilitation by Iy,g

The sodium ion channel Iy,s is slow to activate. Let us consider again stimulation with
a step current using a model which contains both the fast sodium current of the Hodgkin—
Huxley model and the slow sodium current In,s. If the strength of the current step is such
that it does not activate the fast sodium channel but is strong enough to activate Inas,
then the slow activation of this sodium current increases membrane potential gradually
with the time constant of activation of the slow sodium current (Fig. 2.18b). The slow
depolarization continues until the fast sodium current activates and an action potential
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Fig. 2.18 Subthreshold facilitation with Iy,s. (a) Stationary values and (b) time constants of the
activation variable m for the slow sodium current Iy,s similar to measurements done in pyramidal
neurons of the hippocampus (Hoehn et al., 1993). (c) Voltage response. (d) External current. (e) Slow
sodium current activation, leading to delayed spike initiation and firing frequency facilitation.

is generated (Fig. 2.18c). Such delayed spike initiation has been observed in various
types of interneurons of the cortex. If the amplitude of the step current is sufficient to
immediately activate the fast sodium channels, the gradual activation of Iy,s increases
the firing frequency leading to spike-frequency facilitation.
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2.3.5 Calcium spikes and postinhibitory rebound

Postinhibitory rebound means that a hyperpolarizing current which is suddenly switched
off results in an overshoot of the membrane potential or even in the triggering of one or
more action potentials. Through this mechanism, action potentials can be triggered by
inhibitory input. These action potentials, however, occur with a certain delay after the
arrival of the inhibitory input, i.e., after the end of the IPSP (Aizenman and Linden, 1999).

Inactivating currents with a voltage threshold below the resting potential, such as the
low-threshold calcium current, can give rise to a much stronger effect of inhibitory rebound
than the one seen in the standard Hodgkin—Huxley model. Compared with the sodium cur-
rent, the low-threshold calcium current It has activation and inactivation curves that are
shifted significantly toward a hyperpolarized membrane potential so that the channel is
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Fig. 2.19 Postinhibitory rebound through de-inactivation. (a) Activation mg(u) and inactivation
ho(u) at equilibrium of the low-threshold calcium current /1. Small circles indicate the equilibrium
values of m and h at the resting potential. To de-inactivate the current, the membrane potential must
be below rest. (b) The time constants of activation and inactivation. Note that different vertical scales
have been used for 7, and 7}, since the dynamics of the inactivation variable % is slower by a fac-
tor 10-100 than that of the activation variable m. Numerical values of parameters correspond to
a model of neurons in the deep cerebellar nuclei (Kistler and van Hemmen, 2000). (c) Membrane
potential as a function of time. Injection of a hyperpolarizing current pulse (100 pA during 200 ms
from ¢t = 100 ms to # = 300 ms) results, at the end of current injection, in a low-threshold calcium
spike that in turn triggers two sodium action potentials. (d) Time course of activation (solid line, left
scale) and inactivation (dashed line, right scale) variables of the IT current that is responsible for this
phenomenon.
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completely inactivated (h =~ 0) at the resting potential; see Fig. 2.19a and b. In order to
open the low-threshold calcium channels it is first of all necessary to remove its inactiva-
tion by hyperpolarizing the membrane. The time constant of the inactivation variable £ is
rather high and it thus takes a while until % has reached a value sufficiently above zero;
see Fig. 2.19b and d. But even if the channels have been successfully “de-inactivated” they
remain in a closed state, because the activation variable m is zero as long as the membrane
is hyperpolarized. However, the channels will be transiently opened if the membrane poten-
tial is rapidly relaxed from the hyperpolarized level to the resting potential, because acti-
vation is faster than inactivation and, thus, there is a short period when both m and h are
nonzero. The current that passes through the channels is terminated (“inactivated”) as soon
as the inactivation variable & has dropped to zero again, but this takes a while because of
the relatively slow time scale of 7;,. The resulting current pulse is called a low-threshold
calcium spike and is much broader than a sodium spike.

The increase in the membrane potential caused by the low-threshold calcium spike may
be sufficient to trigger ordinary sodium action potentials. These are the rebound spikes that
may occur after a prolonged inhibitory input. Figure 2.19c shows an example of (sodium)
rebound spikes that ride on the broad depolarization wave of the calcium spike; note that
the whole sequence is triggered at the end of an inhibitory current pulse. Thus release from
inhibition causes here a spike-doublet.

2.4 Summary

The Hodgkin—Huxley model describes the generation of action potentials on the level of
ion channels and ion current flow. It is the starting point for detailed biophysical neu-
ron models which in general include more than the three types of currents considered by
Hodgkin and Huxley. Electrophysiologists have described an overwhelming richness of
different ion channels. The set of ion channels is different from one neuron to the next.
The precise channel configuration in each individual neuron determines a good deal of its
overall electrical properties.

Literature

A nice review of the Hodgkin—Huxley model including some historical remarks can be
found in Nelson and Rinzel (1995). A comprehensive and readable introduction to the bio-
physics of single neurons is provided by the book of Christof (1999). Even more detailed
information on ion channels and nonlinear effects of the nervous membrane can be found
in B. Hille’s book of Ionic Channels of Excitable Membranes (Hille, 2001). The rapidly
growing knowledge of the genetic description of ion channel families and associated phe-
notypes is condensed in Channelpedia (Ranjan et al., 2011).
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Exercises

. Nernst equation. Using the Nernst equation (Eq. 2.2) calculate the reversal potential of Ca>*
at room temperature (21 degrees Celsius), given an intracellular concentration of 10~* mM and
an extracellular concentration of 1.5 mM.

. Reversal potential and stationary current—voltage relation. An experimenter studies an
unknown ion channel by applying a constant voltage u while measuring the injected current 1
needed to balance the membrane current that passes through the ion channel.

(a) Sketch the current—voltage relationship (I as a function of u) assuming that the current
Sollows Lign = gionmh (u — Exrey) with gion = 1 nS and Erey = 0 mV where m = 0.1 and h = 1.0
are independent of the voltage.

(b) Sketch qualitatively the current—voltage relationship assuming that the current follows
Lion = gionmh (u — Erey) with gion = 1 nS and Erey = 0 mV where mo(u) and ho(u) have the
qualitative shape indicated in Fig. 2.15.

. Activation time constant. An experimenter holds the channel from Fig. 2.15a and b at u =
—50 mV for two seconds and then suddenly switches to u = 0 mV. Sketch the current passing
through the ion channel as a function of time, assuming L, = gionmh (4 — Erey) with gion = 1 1S
and Erey = 0 mV.

. The power of the exponent. An experimenter holds an unknown potassium ion channel with
activation variable n with voltage dependence no(u) and time constant T, at u = —50mV for two
seconds and then, at time t = 0, suddenly switches to u =0 mV.

(a) Sketch the activation variable n, n%, n® as a function of time for times smaller than T,.

(b) Show mathematically that for 0 < t < 1, the time course of the activation variable can be
approximated n(t) = no(—50mV) + [no(0mV) — no(—50mV)|t / T,

(¢) Do you agree with the statement that “the exponent p in the current formula Ly, = gijonn? (u—

Erey) determines the “delay” of activation”? Justify your answer.
. Hodgkin-Huxley parameter estimation. Design a set of experiments to constrain all the param-
eters of the two ion channels of the Hodgkin—Huxley model. Assume that the neuron has only the
INa and I currents and that you can use tetrodotoxin (TTX) to block the sodium ion channel and
tetraethylammonium (TEA) to block the potassium ion channel.

Hint: Use the results of the previous exercises.

. Simplified expression of the activation function. Show that with the voltage-dependent param-
eters o4y (u) = 1/[1 — e~ /P] and By, (u) = 1/[1 — e~ /8] (compare Table 2.1), the sta-
tionary value of the activation variable can be written as my(u) = 0.5[1 + tanh[f (u — 6,¢¢)]]-
Determine the activation threshold 0,c; and the activation slope 3.

Hint: tanh(x) = [exp(x) — exp(—x)]/[exp(x) + exp(—x)].
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Dendrites and synapses

Neurons have intricate morphologies: the central part of the cell is the soma, which con-
tains the genetic information and a large fraction of the molecular machinery. At the soma
originate long wire-like extensions which come in two different flavors. First, the den-
drites form a multitude of smaller or larger branches on which synapses are located. The
synapses are the contact points where information from other neurons (i.e., “presynaptic”
cells) arrives. Second, also originating at the soma, is the axon, which the neuron uses
to send action potentials to its target neurons. Traditionally, the transition region between
soma and axon is thought to be the crucial region where the decision is taken whether a
spike is sent out or not.

The Hodgkin—Huxley model, at least in the form presented in the previous chapter, disre-
gards this spatial structure and reduces the neuron to a point-like spike generator — despite
the fact that the precise spatial layout of a neuron could potentially be important for signal
processing in the brain. In this chapter we will discuss how some of the spatial aspects can
be taken into account by neuron models. In particular we focus on the properties of the
synaptic contact points between neurons and on the electrical function of dendrites.

3.1 Synapses

In the previous chapter, we have encountered two classes of ion channels, namely voltage-
activated and calcium-activated ion channels. The third type of ion channel we have to
deal with are the transmitter-activated ion channels involved in synaptic transmission (see
Fig. 3.1) and generally activated from outside the cell. Activation of a presynaptic neuron
results in a release of neurotransmitters into the synaptic cleft. The transmitter molecules
diffuse to the other side of the cleft and activate receptors that are located in the post-
synaptic membrane. So-called ionotropic receptors have a direct influence on the state of
an associated ion channel. Metabotropic receptors control the state of an ion channel by
means of a biochemical cascade of G proteins and second-messengers. In both cases, the
activation of the receptor results in the opening of certain ion channels and, thus, in an
excitatory or inhibitory postsynaptic transmembrane current (EPSC or IPSC).

Instead of developing a mathematical model of the transmitter concentration in the
synaptic cleft, we keep things simple and describe transmitter-activated ion channels as
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an explicitly time-dependent conductivity gsyn(#) that will open whenever a presynaptic
spike arrives. The current that passes through a synaptic channel depends, as before, on
the difference between its reversal potential Esy, and the actual value of the membrane
potential,

Isyn(1) = gsyn (1) (u(t) — Esyn) - 3.1

The parameter Egy, and the function gsyn () can be used to describe different types of
synapses. For inhibitory synapses Egy, is usually set to —75mV, whereas for excitatory
synapses Egy, ~ 0.

Typically, a superposition of exponentials is used for g (). A simple choice for the
time course of the synaptic conductance in Eq. (3.1) is an exponential decay

gsyn(t ngyne =Nlre i —1f), (3.2)

with a time constant of, e.g., T = 5ms and an amplitude of g5y, = 40 pS. Here, +/ denotes
the arrival time of a presynaptic action potential and ©(x) is the Heaviside step function.

For some synapse types, a single exponential decay is not sufficient. Rather, the post-
synaptic current is made up of two different components, a fast one with a decay time
constant of a few milliseconds, and a second one that is often ten times slower. If we also
take into account the smooth rise of the synaptic response, the postsynaptic conductance is
of the form

gsyn quyn 1—6‘ (t—t )/Tnse] ae —(t— tf /ﬁasl_‘_(l )ef(tftf)/rslow:| @(l‘*l‘f), (33)

where a is the relative weight of the fast component. The time constant 7, characterizes
the rise time of the synaptic conductance.

Example: A more detailed synapse model

Instead of considering a synapse with a fixed time course g (), we can also make
a model which has the flavor of a Hodgkin—Huxley channel. We describe the synaptic
conductance geyn(f) = gmax R(), by its maximal conductance gmax and a gating variable
R, where R(t) is the fraction of open synaptic channels. Channels open when neurotrans-
mitter N binds to the synapse

dr
& =N(-R)-BR, (3.4)

where o is the binding constant, 3 the unbinding constant and (1 — R) the fraction
of closed channels where binding of neurotransmitter can occur. Neurotransmitter N
is released with each presynaptic spike so that the total amount of neurotransmitter at
synapse j is

/ ¥Y(s)S;(t—s)d 3.5)
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Fig. 3.1 (a) Schema of synaptic transmission. Upon arrival of a presynaptic spike, neurotransmitter
spills into the synaptic cleft and is captured by postsynaptic receptors. (b) Schema of a postsynaptic
AMPA! receptor of an excitatory synapse. When glutamate is bound to the receptor, sodium and
potassium ions can flow through the membrane.

where S; = ¥, 6(t — t{ ) is the presynaptic spike train (a sequence of §-functions, see
Chapter 1) and y(s) is the time course of the neurotransmitter density as measured at
the site of the postsynaptic receptor. More advanced synaptic signaling schemes can be
designed along the same line of argument (Destexhe et al., 1994b).

3.1.1 Inhibitory synapses

The effect of fast inhibitory neurons in the central nervous system of higher vertebrates is
almost exclusively conveyed by a neurotransmitter called y-aminobutyric acid, or GABA
for short. A characteristic feature of inhibitory synapses is that the reversal potential Egy,
is in the range of —70 to —75mV. Thus, if the neuronal membrane potential is above
the reversal potential, presynaptic spike arrival leads to a hyperpolarization of the neu-
ron, making action potential generation less likely. However, the same presynaptic spike
would lead to a depolarization of the membrane if the neuron has its membrane potential at
—80mV or below.

There are many different types of inhibitory interneurons (Markram et al., 2004; Klaus-
berger and Somogyi, 2008). Biologists distinguish between two major types of inhibitory
synapse, called GABA, and GABAg. Both synapse types use GABA as the neurotrans-
mitter. GABA channels are ionotropic and open exclusively for chloride ions, whereas
GABAg synapses have metabotropic receptors that trigger a comparatively slow signal-
ing chain ultimately leading to the opening of Kt channels. Consequently the value of
the synaptic reversal potential Egy, depends for GABA synapses on the concentration of
chloride ions inside and outside the cell, while that of GABAp synapses depends on the
potassium concentrations.

' AMPA is short for a:-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid.
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Example: GABA, synapse model

GABA synapses have a fast time course that can be approximated by a single term
in Eq. (3.3) with a = 1, T;ise = 1 ms, and a time constant T¢,ss =~ 6 ms (Destexhe and Pare
(1999); Fig. 3.2), which has also been deemed 3 times larger. More complex models are
sometimes used (Destexhe et al., 1994b).

Example: GABAg synapse model

This is a slow inhibitory synapse working via a second-messenger chain. Common
models use Eq. (3.3) with a rise time of about 25-50 ms, a fast decay time in the range
of 100-300ms and a slow decay time of 500—1000 ms. The fast component accounts
for about 80% of the amplitude of conductance (a = 0.8) (Destexhe et al., 1994b;
McCormick et al., 1993), illustrated in Fig. 3.2.

3.1.2 Excitatory synapses

Most excitatory synapses in the vertebrate central nervous system rely on glutamate as
their neurotransmitter. The postsynaptic receptors, however, can have very different phar-
macological properties and different types of glutamate receptor units can be present in
a single synapse. These receptors are classified using artificial drugs such as NMDA or
AMPA that act as selective agonists. NMDA (N-methyl-D-aspartate) binds to channels
with NMDA receptors, but not to other glutamate receptors. The most prominent among
those glutamate receptors that do not respond to NMDA are the AMPA-receptors. AMPA is
an artificial glutamate. Channels with AMPA-sensitive receptors are called “AMPA chan-
nels” because these channels react to AMPA, whereas channels with NMDA-sensitive
receptors do not open upon application of AMPA. However, both NMDA and AMPA
channels react to the natural form of glutamate that the nervous system uses as
neurotransmitter.

AMPA receptors consist of four subunits, each with a glutamate binding site. Most
AMPA receptors contain the subunit called GluR2. If an AMPA-receptor channel contain-
ing GluR2 is open, sodium and potassium ions can pass, but calcium ions cannot. Synaptic
channels with AMPA-receptors are characterized by a fast response to presynaptic spikes
and a quickly decaying postsynaptic current.

NMDA -receptor controlled channels are significantly slower and have additional inter-
esting properties that are due to a voltage-dependent block by magnesium ions (Hille,
1992). In addition to sodium and potassium ions, also calcium ions can pass through open
NMDA-channels.
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Example: Conductance of glutamate channels with AMPA -receptors

The time course of the postsynaptic conductivity caused by an activation of AMPA-
receptors at time # = ¢/ is sometimes described by Eq. (3.2) with a decay time of about
2-5 ms (Gabbiani et al., 1994; Destexhe et al., 1994b).

Example: Conductance of glutamate channels with NMDA -receptors

NMDA-receptor controlled channels exhibit a rich repertoire of dynamic behavior
because their state is controlled not only by the presence or absence of glutamate, but
also by the membrane potential. At resting potential the NMDA channel is blocked by a
common extracellular ion, Mg2+, even if glutamate is present (Hille, 1992). Even in the
presence of glutamate, the channel remains closed at the resting potential. If the mem-
brane is depolarized beyond —50mV, the Mg”—block is removed, the channel opens
when glutamate binds to the receptor and, thereafter, stays open for 10—100 ms. A sim-
ple model of the voltage dependence of NMDA-receptor controlled channels is

axwDA (1) = Bwpa - [ 1 —e (1) e | e R g (Mg o) Ot — 1)
with go.(u, [Mg2"]o) = (14 Be®Mg>'],) ', (3.6)
with T in the range of 3ms to 15ms, Tyecay in the range of 40ms to 100 ms,
Znmpa = 1.51S, o = —0.062mV~!, B = 1/(3.57mM), and an extracellular magnesium
concentration [Mg2+]0 = 1.2 mM (McCormick et al., 1993; Gabbiani et al., 1994).
What is the potential functional role of NMDA receptors? First, their comparatively
long time constant keeps a trace of presynaptic events and acts as a low-pass filter. Sec-
ond, even though NMDA -receptor controlled ion channels are permeable to sodium and
potassium ions, their permeability to Ca>* is five or ten times larger. Calcium ions are
known to play an important role in intracellular signalling and are probably involved in
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Fig. 3.3 Short-term plasticity. A synapse is activated by four presynaptic spikes and a fifth spike 400
ms later. (a) At a facilitating synapse, the effect of the second and third spike is larger than that of
the first spike. The effect of a spike after a pause of 400 ms is approximately that of the first spike
(time constant 7p = 200 ms). (b) At a depressing synapse, successive spikes in a periodic spike train
have less and less effect: 400 ms later, the synapse has partially recovered, but is still significantly
depressed (Tp = 500 ms).

long-term modifications of synaptic efficacy. Calcium influx through NMDA-controlled
ion channels can occur if presynaptic spike arrival (leading to glutamate release from
presynaptic sites) coincides with a depolarization of the postsynaptic membrane (lead-
ing to removal of the Mg?*-block). Hence, NMDA-receptors operate as molecular coin-
cidence detectors between pre- and postsynaptic events.

3.1.3 Rapid synaptic dynamics

Parameters of a synaptic contact point are not fixed, but can change as a function of the
stimulation history. Some of these changes are long-lasting and are thought to represent the
neuronal correlate of learning and memory formation. The description of these learning-
related changes will be covered in Chapter 19. Here we concentrate on dynamic changes
of the synapse that do not persist but decay back to their normal values within hundreds of
milliseconds or a few seconds. These changes are called short-term synaptic plasticity.

Short-term synaptic plasticity can be measured if a presynaptic neuron is stimulated so
as to generate a sequence of spikes. Synaptic facilitation means that the apparent amplitude
of a postsynaptic current in response to the second spike is larger than that to the first spike.
Synaptic depression is the opposite effect (Fig. 3.3).

As a simple model of synaptic facilitation and depression (Dayan and Abbott, 2001), we
assume that the maximal synaptic conductance gy, in Eq. (3.2) or (3.3) depends on the
fraction P of presynaptic sites releasing neurotransmitter. Facilitation and depression can
both be modeled as presynaptic processes that modify P,j. With each presynaptic spike,
the number of available presynaptic release sites changes. Between spikes the value of Py
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(d)

Fig. 3.4 Reconstructed morphology of various types of neurons. (a) Pyramidal neuron from a deep
cortical layer (Contreras et al., 1997). (b) Pyramidal neuron from the CA1l of the hippocampus
(Golding et al., 2005). (c) Purkinje cell from the cerebellum (Rapp et al., 1994). (d) Motoneuron
from the spinal cord (Cullheim er al., 1987). (e) Stellate neuron from the neocortex (Mainen and
Sejnowski, 1996). Reconstructed morphologies can be downloaded from http://NeuroMorpho.Org.
Scale bars represent 100 pm.

returns exponentially to its resting value Py. Thus,

dPrel _ _Prel -

P ;
a o +fe(1—Par) Y, 8(t—17) (3.7)

7

where 7Tp is a time constant, fr controls the degree of facilitation, and #/ denotes the times
of presynaptic spike arrivals.

The model of a depressing synapse is completely analogous. The amount of neurotrans-
mitter available for release develops according to the differential equation

dPrel _ Prel -
dr Tp

il — foPa 3,8(t—17) (3.8)
>

where 7p is a time constant and the parameter fp with 0 < fp < 1 controls the amount of
depression per spike.

The total effect of presynaptic spikes depends on the available neurotransmitter as well
as the value go of postsynaptic conductance if all synaptic ion channels are open, so that,
for depressing or facilitating synapses, we can use Eq. (3.2) with a value gsyn = Pre1 g0. This
procedure has been used to generate Fig. 3.3.

3.2 Spatial structure: the dendritic tree

Neurons in the cortex and other areas of the brain often exhibit highly developed dendritic
trees that may extend over several hundred microns (Fig. 3.4). Synaptic input to a neuron
is mostly located on its dendritic tree. Disregarding NMDA- or calcium-based electrogenic
“spikes,” action potentials are generated at the soma near the axon hillock. Up to now we



3.2 Spatial structure: the dendritic tree 65

have discussed point neurons only, i.e., neurons without any spatial structure. What are the
consequences of the spatial separation of input and output?

The electrical properties of point neurons have been described as a capacitor that is
charged by synaptic currents and other transversal ion currents across the membrane.
A non-uniform distribution of the membrane potential on the dendritic tree and the soma
induces additional longitudinal current along the dendrite. We are now going to derive the
cable equation that describes the membrane potential along a dendrite as a function of time
and space. In Section 3.4 we shall see how geometric and electrophysiological properties
can be integrated in a comprehensive biophysical model.

3.2.1 Derivation of the cable equation

Consider a piece of dendrite decomposed into short cylindric segments of length dx each.
The schematic drawing in Fig. 3.5 shows the corresponding circuit diagram. Using Kirch-
hoff’s laws we find equations that relate the voltage u(x) across the membrane at location x
with longitudinal and transversal currents. First, a longitudinal current i(x) passing through
the dendrite causes a voltage drop across the longitudinal resistor Ry, according to Ohm’s
law,

u(t,x+dx) —u(t,x) =Rpi(t,x), (3.9)

where u(z,x+ dx) is the membrane potential at the neighboring point x + dx. Second, the
transversal current that passes through the RC-circuit is given by C du(t,x) /9t + X;on ion
where the sum runs over all ion channel types present in the dendrite. Kirchhoff’s law
regarding the conservation of current at each node leads to

i(t,x+dx) —i(t,x) = C% u(t,x) + Y Tion — Iexi (£,%) . (3.10)

ion
The values of the longitudinal resistance Ry, the capacity C, the ionic currents as well as the

externally applied current can be expressed in terms of specific quantities per unit length
L, C, Lion and iex;, respectively, namely

Ry =rdx, C=cdx, Ix(t,x)=iext(t,x)dx, Lion(t,x) =7ijon(t,x)dx. (3.11)

These scaling relations express the fact that the longitudinal resistance and the capacity
increases with the length of the cylinder. Similarly, the total amount of transversal current
increases with the length dx simply because the surface through which the current can pass
is increasing. Substituting these expressions in Egs. (3.9) and (3.10), dividing by dx, and
taking the limit dx — O leads to

%u(t,x) = rpi(t,x) (3.12a)
% i(t,x) = c%u(i,x) —|—Ziion(t7x) — fext(2,%) . (3.12b)

ion
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Fig. 3.5 Part of a dendrite and the corresponding circuit diagram. Longitudinal and transversal resis-
tors are denoted by Ry, and Rrt, respectively. The electrical capacity of each small piece of dendrite
is symbolized by capacitors C.

Taking the derivative of equation (3.12a) with respect to x and substituting the result into
(3.12b) yields

9? d . .
52 u(t,x) =cry 5 u(t,x) + rL%lion(t,x) — 1L lext (2, X). (3.13)

Equation (3.13) is called the general cable equation.

Example: Cable equation for passive dendrite

The ionic currents Yo, fion(7,x) in Eq. (3.13) can in principle comprise many dif-
ferent types of ion channel, as discussed in Section 2.3. For simplicity, the dendrite is
sometimes considered as passive. This means that the current density follows Ohm’s law
Siontion(#,X) = g1(u — E;) where g; = 1/ry is the leak conductance per unit length and
E; is the leak reversal potential.

We introduce the characteristic length scale A2 =rr /rL (“electrotonic length scale”)
and the membrane time constant T = rrc. If we multiply Eq. (3.13) by A2 we get

A2 ;—; ult,x)=1 % u(t,x) + [u(t,x) — Ej] — rriext(t,x). (3.14)
After a transformation to unit-free coordinates,
x—=X=x/A, t—i=t/1, (3.15)
and a rescaling of the current and voltage variables,
i—=i=\/rTrLi, iext— fext =rriext, u—l=u—Ej, (3.16)

we obtain the cable equation (where we have dropped the hats)
d 92 .
Eu(r,x) = ﬁu(t,x)—u(t,x)—l—zext(t,x), (3.17)

in an elegant unit-free form.
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The cable equation can be easily interpreted. The change in time of the voltage at
location x is determined by three different contributions. The first term on the right-hand
side of Eq. (3.17) is a diffusion term that is positive if the voltage is a convex function of
x. The voltage at x thus tends to increase, if the values of u are higher in a neighborhood
of x than at x itself. The second term on the right-hand side of Eq. (3.17) is a simple decay
term that causes the voltage to decay exponentially towards zero. The third term, finally,
is a source term that acts as an inhomogeneity in the otherwise autonomous differential
equation. This source can be due to an externally applied current or to synaptic input
arriving at location x.

Example: Stationary solutions of the cable equation

In order to get an intuitive understanding of the behavior of the cable equation of a
passive dendrite we look for stationary solutions of Eq. (3.17), i.e., for solutions with
du(t,x)/dt = 0. In that case, the partial differential equation reduces to an ordinary
differential equation in x, namely

92
ﬁu(t,x)—u(t,x) = —iext(2,X) . (3.18)

The general solution to the homogenous equation with iex(z,x) = 0 is
u(t,x) = c; sinh(x) 4 ¢, cosh(x), (3.19)

as can easily be checked by taking the second derivative with respect to x. Here, ¢; and
¢y are constants that are determined by the boundary conditions.

Solutions for non-vanishing input current can be found by standard techniques. For
a stationary input current e (f,x) = 0(x) localized at x = 0 and boundary conditions
u(£e) = 0 we find

ul(t,x) = %e*‘ﬂ; (3.20)

see Fig. 3.6. This solution is given in units of the intrinsic length scale A = (rp/r)"/2. If
we re-substitute the physical units, we see that A is the length over which the stationary
membrane potential drops by a factor 1/e. In the literature A is referred to as the electro-
tonic length scale (Rall, 1989). Typical values for the specific resistance of the intracellu-
lar medium and the cell membrane are 100 Q cm and 30k Q cm?, respectively. In a den-
drite with radius p = 1 um this amounts to a longitudinal and a transversal resistance of
L =100Qcm/(7p?) =3 x 10°Qum~! and rr = 30kQcm?/(27p) =5 x 10 Q um.
The corresponding electrotonic length scale is A = 1.2mm. Note that the electrotonic
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Fig. 3.6 Stationary solution of the cable
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length can be significantly smaller if the transversal conductivity is increased, e.g., due
to open ion channels.

For arbitrary stationary input current iex(x) the solution of Eq. (3.17) can be found by
a superposition of translated fundamental solutions (3.20), namely

1 ,
u(t,x) = / ' Ee*|H i (). (3.21)

This is an example of the Green’s function approach applied here to the stationary case.
The general time-dependent case will be treated in the next section.

3.2.2 Green’s function of the passive cable

In the following we will concentrate on the equation for the voltage and start our analysis
by a discussion of the Green’s function for a cable extending to infinity in both directions.
The Green’s function is defined as the solution of a linear equation such as Eq. (3.17) with
a Dirac §-pulse as its input. It can be seen as an elementary solution of the differential
equation because — due to linearity — the solution for any given input can be constructed as
a superposition of these Green’s functions.

Suppose a short current pulse iexc(#,X) is injected at time r = 0 at location x = 0. As we
will show below, the time course of the voltage at an arbitrary position x is given by

2
u(t,x) = \(2% exp {—t - z] = G (t,x), (3.22)

where G..(t,x) is the Green’s function. Knowing the Green’s function, the general solution
for an infinitely long cable is given by

1 oo
u(t,x) :/ dt// A Geo(t — ', x — 1 Yiext (', X)) . (3.23)

The Green’s function is therefore a particularly elegant and useful mathematical tool: once
you have solved the linear cable equation for a single short current pulse, you can write
down the full solution to arbitrary input as an integral over (hypothetical) pulse-inputs at
all places and all times.
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Checking the Green’s property (*)
We can check the validity of Eq. (3.22) by substituting G (z,x) into Eq. (3.17). After a
short calculation we find
J 9? 1
at I Varnt
where we have used dO(t)/dr = 6(z). As long as ¢ # 0 the right-hand side of Eq. (3.24)
vanishes, as required by Eq. (3.28). For r — 0 we find

. 1 x?
}Lmo Tani exp (—t - 4t) =0(x), (3.25)

which proves that the right-hand side of Eq. (3.24) is indeed equivalent to the right-hand
side of Eq. (3.28).
Having established that

2
+ 1} Gult,x) = exp (t x) 8(1), (3.24)

4t

2 02
[(% A 1] Gl ) = 5(x) 5(1) (3.26)

we can readily show that Eq. (3.23) is the general solution of the cable equation for arbi-
trary input currents i (fy, X ). We substitute Eq. (3.23) into the cable equation, exchange
the order of integration and differentiation, and find

|2- ;22“] (1)

K
K

82

82
/ {t +1}G( — x— )i, X)
/ A §(x—x') 8(1 — 1) ist(I' 1) = o (£,5) . (3.27)

Derivation of the Green’s function (*)

Previously, we have just “guessed” the Green’s function and then shown that it is indeed a
solution of the cable equation. However, it is also possible to derive the Green’s function
step by step. In order to find the Green’s function for the cable equation we thus have to
solve Eq. (3.17) with iex(7,x) replaced by a -impulse at x =0 and t =0

0 92

Eu(t x)— B u(t,x)+u(t,x) =96(t)d(x). (3.28)
Fourier transformation with respect to the spatial variable yields

%u(l,k)—kkzu(t,k)—i—u(t,k) =0(t)/V2rm. 3.29)

This is an ordinary differential equation in ¢ and has a solution of the form

u(t,k) =exp [— (1+&%) t] /V27mO(t), (3.30)
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with ©(r) denoting the Heaviside function. After an inverse Fourier transform we obtain
the desired Green’s function G..(t,x),

2
u(t,x) = \(;)4% exp {—t— L] = G (t,x). (3.31)

Example: Finite cable

Real cables do not extend from —eo to oo and we have to take extra care to correctly
include boundary conditions at the ends. We consider a finite cable extending from x =0
to x = L with sealed ends, i.e., i(t,x = 0) = i(t,x = L) = 0 or, equivalently, %u(r,x =
0) = ZLu(t,x=L)=0.

The Green’s function Gy, for a cable with sealed ends can be constructed from G..
by applying a trick from electrostatics called “mirror charges” (Jackson, 1962). Similar
techniques can also be applied to treat branching points in a dendritic tree (Abbott,
1991). The cable equation is linear and, therefore, a superposition of two solutions is
also a solution. Consider a §-current pulse at time 7y and position xy somewhere along
the cable. The boundary condition %u(t,x = 0) = 0 can be satisfied if we add a second,
virtual current pulse at a position x = —xq outside the interval [0,L]. Adding a current
pulse outside the interval [0,L] comes for free since the result is still a solution of the
cable equation on that interval. Similarly, we can fulfill the boundary condition at x = L
by adding a mirror pulse at x =2 L — xp. In order to account for both boundary conditions
simultaneously, we have to compensate for the mirror pulse at —xo by adding another
mirror pulse at 2L + xy and for the mirror pulse at x = 2 L — x by adding a fourth pulse

—2 L+ xo and so forth. Altogether we have

G()L to,Xx051, x Z G to,x—ZnL—xo)—l—Gw(t—to,x—ZnL—&—xo). (3.32)
We emphasize that in the above Green’s function we have to specify both (y,xo) and
(¢,x) because the setup is no longer translation invariant. The general solution on the
interval [0,L] is given by

t L
M(L)C)Z/ dto/ode GQ’L(Z‘()JCQ;t,x)iext(to,xO). (3.33)

An example for the spatial distribution of the membrane potential along the cable is
shown in Fig. 3.7a, where a current pulse has been injected at location x = 1. In addition
to Fig. 3.7a, Fig. 3.7b exhibits the time course of the membrane potential measured in
various distances from the point of injection. It is clearly visible that the peak of the
membrane potential measured at, say, x = 3 is more delayed than at, say, x = 2. Also the
amplitude of the membrane potential decreases significantly with the distance from the
injection point. This is a well-known phenomenon that is also present in neurons. In the
absence of active amplification mechanisms, synaptic input at distal dendrites produces



3.2 Spatial structure: the dendritic tree 71

(@) (b)

0.8
0.4
0.6
0.3
u 04 u 02
0.2 0.1
0 0
0 1 2 3 4 5 0 0.5 1 1.5 2 2.5 3
X t

Fig. 3.7 Spatial distribution (a) and temporal evolution (b) of the membrane potential along a

dendrite (L = 5) with sealed ends ( %u

= 0 | after injection of a unit current pulse at x = 1
xe{0,L}

and ¢ = 0. The various traces in (a) show snapshots for time s = 0.1,0.2,..., 1.0, respectively (top to
bottom). The traces in (b) give the membrane potential as a function of time for different locations
x=1.5,2.0,2.5,...,5.0 (top to bottom) along the cable.

broader and weaker response at the soma as compared to synaptic input at proximal
dendrites.

3.2.3 Nonlinear extensions to the cable equation

In the context of a realistic modeling of “biological” neurons, two nonlinear extensions
of the cable equation have to be discussed. The obvious one is the inclusion of nonlinear
elements in the circuit diagram of Fig. 3.5 that account for specialized ion channels. As we
have seen in the Hodgkin—Huxley model, ion channels can exhibit a complex dynamics that
is in itself governed by a system of (ordinary) differential equations. The current through
one of these channels is thus not simply a (nonlinear) function of the actual value of the
membrane potential but may also depend on the time course of the membrane potential
in the past. Using the symbolic notation ijo,[u](z,x) for this functional dependence, the
extended cable equation takes the form

2
%u(t,x) = % u(t,x) —u(t,x) — bion[u] (£,X) + fext (t,X) . (3.34)

A more subtle complication arises from the fact that a synapse cannot be treated as
an ideal current source. The effect of an incoming action potential is the opening of ion
channels. The resulting current is proportional to the difference of the membrane potential
and the corresponding ionic reversal potential. Hence, a time-dependent conductivity as in
Eq. (3.1) provides a more realistic description of synaptic input than an ideal current source
with a fixed time course.

If we replace in Eq. (3.17) the external input current iex (¢, x) by an appropriate synaptic
input current —igy,(f,X) = —geyn(t,x)[u(t,x) — Egyn] with ggn being the synaptic
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conductivity and Esy, the corresponding reversal potential, we obtain?

2

0 0
> u(t,x) = ﬁu(t,x) —u(t,x) — gsyn(t,x) [u(t,x) — Egyn] . (3.35)

This is still a linear differential equation but its coefficients are now time-dependent. If
the time course of the synaptic conductivity can be written as a solution of a differential
equation, then the cable equation can be reformulated so that synaptic input reappears as
an inhomogeneity to an autonomous equation. For example, if the synaptic conductivity is
simply given by an exponential decay with time constant Tsy, we have

0 22
> u(t,x) — ) u(t,x) +u(t,x) + geyn(t,x) [u(t,x) — Esyn] =0, (3.36a)

J
578 (1) = Tngan(1,2) = S(6,x). (3.36b)

Here, S(¢,x) is a sum of Dirac §-functions which describe the presynaptic spike train that
arrives at a synapse located at position x. Note that this equation is nonlinear because it
contains a product of gsn and u which are both unknown functions of the differential
equation. Consequently, the formalism based on Green’s functions cannot be applied. We
have reached the limit of what we can do with analytical analysis alone. To study the
effect of ion channels distributed on the dendrites numerical approaches in compartmental
models become invaluable (Section 3.4).

3.3 Spatial structure: axons

Any given neuron has a single axon that leaves the soma to make synaptic contacts. Like
dendrites, axons have a range of different morphologies. Some axons project mainly to
neurons close by. This is the case for neurons in the layer 2-3 of cortex; their axons branch
out in all directions from the soma forming a star-shaped axonal arbor called a “daisy.”
Other neurons such as pyramidal neurons situated deeper in the cortex have axons that
plunge in the white matter and may cross the whole brain to reach another brain area.
There are even longer axons that leave the central nervous system and travel down the
spinal cord to reach muscles at the tip of the foot.

In terms of propagation dynamics, we distinguish two types of axons: the myelinated
and the unmyelinated axons. We will see that myelin is useful to increase propagation
speed in far-reaching projections. This is the case for cortical projections passing through
the white matter, or for axons crossing the spinal cord. Short projections on the other hand
use axons devoid of myelin.

3.3.1 Unmyelinated axons

Mathematical description of the membrane potential in the axon is identical to that of
dendrites with active ion channels. Unmyelinated axons contain sodium and potassium

2We want outward currents to be positive, hence the change in the sign of iey and igyy.
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channels uniformly distributed over their entire length. The classical example is the squid
giant axon investigated by Hodgkin and Huxley. The Hodgkin—Huxley model described in
Chapter 2 was developed for a small axon segment. The general equation for ion channels
imbedded on a passive membrane is
d 92 .
L u(t,x) = 52 u(t,x) — ro(u(t,x) — Ey) — riiion[u] (2,x) (3.37)

where we have reverted to a variable « in units of mV from the equation of active dendrites
seen in Section 3.2.3. For the giant squid axon, the ionic current are described by the
Hodgkin—Huxley model

fion[u] (2,x) = gNa it (t,x)h(t,x) (u(t,x) — Ena) +gKn4(t,x) (u(t,x) — Ex). (3.38)

In other systems, the axon may be covered with other types of sodium or potassium ion
channels.

When an action potential is fired in the axon initial segment, the elevated membrane
potential will depolarize the adjacent axonal segments. Sodium channels farther down the
axon, which were previously closed, will start to open, thereby depolarizing the mem-
brane further. The action potential propagates by activating sodium channels along the
cable rather than by spreading the charges as in a passive dendrite. The properties of the
ion channels strongly influence conduction velocity. In the unmyelinated axons of the hip-
pocampus, the conduction velocity of the axons is 0.25 m/s.

The dynamics described by Eqgs. (3.37)—(3.38) reproduces many properties of real axons.
In particular, two spikes traveling in opposite direction will collide and annihilate each
other. This is unlike waves propagating on water. Another property is reflection at branch
points. When the impedance mismatch at the point where a single axon splits into two is
significant, the action potential can reflect and start traveling in the direction it came from.

The solution of Eq. (3.37) with sodium and postassium ion channels as in Eq. (3.38)
cannot be written in a closed form. Properties of axonal propagation are either studied
numerically (see Section 3.4) or with reduced models of ion channels.

Example: Speed of propagation with simplified action potential dynamics

For the sake of studying propagation properties, we can replace the active properties
of a small axonal segment by a bistable switch (FitzHugh, 1961; Nagumo et al., 1962) .
We can write the time- and space-dependent membrane potential as

82

d B rLg
L u(t,x) = E%) u(t,x) —

l1—a

u(t,x)(u(t,x) —1)(u(t,x) —a), (3.39)

where a < 1/2 and g are parameters. The membrane potential is scaled such that it rests
at zero but may be activated to # = 1. The reduced model can switch between u = 0 and
u = 1 if it is pushed above u = a, but does not reproduce the full upswing followed by
downswing of action potentials.
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It turns out that Eq. (3.39) can also be interpreted as a model of flame front propaga-
tion. The solution of this equation follows (Zeldovich and Frank-Kamenetskii, 1938)

1
u(x,t) = ﬁ (3.40)
+ exp ( _"*>
with traveling speed v2A
v — M. (3.41)
2(1—a)rL/g

The propagation velocity depends on the capacitance per unit length ¢, the longitudinal
resistance per unit length 1, and the excitability parameters g and a.

How does the conduction velocity scale with axon size? Since r1,, ¢ and g themselves
depend on the diameter of the axon, we expect the velocity to reflect that relationship.
The parameters ¢ and g scale with the circumference of the cellular membrane and
therefore scale linearly with the radius p. The cytoplasmic resistance per unit length,
however, scales with the cross-sectional area, ry, o< p2. With these relations in mind,
Eq. (3.41) shows that the conduction velocity is proportional to the square root of the
diameter v o ,/p. Therefore, increasing the diameter improves propagation velocity.
This is thought to be the reason why the unmyelinated axons that Hodgkin and Huxley
studied were so large (up to p = 500 pm).

3.3.2 Mpyelinated axons

Myelinated axons have sodium and potassium channels only in restricted segments called
nodes of Ranvier. These nodes form only 0.2% of the axonal length, the rest is considered
a passive membrane that is wrapped into a myelin sheath. Myelin mainly decreases the
membrane capacitance C and increase the resistance Ry by a factor of up to 300 (Debanne
et al.,2011). Ions are trapped by myelin since it prevents them from either flowing outside
the axon or accumulating on the membrane. Instead, ions flow in and out of the nodes such
that an ion leaving a node of Ranvier forces another to enter the following node. Assuming
that the nodes are equally separated by a myelinated segment of length L, we can model the
evolution of the membrane potential at each node u,,. The dynamics of idealized myelinated
axons follow Kirchoff’s equation with a resistance Ry = Lry replacing the myelinated
segment

du, 1

dr = E(Mnﬂ () — 20, (2) + -1 (2)) — %Iion_’n(t) (3.42)

where C is the total capacitance of the node. This equation was encountered in the deriva-
tion of the cable equation (Section 3.2.1). The conduction velocity is greatly increased by
myelin such that some nerves reach 70-80 m/s (Debanne et al., 2011).
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Example: Propagation speed with simplified action potential dynamics

Using the simplification of the ion channel dynamics in Eq. (3.39) for each node

e L 10~ 200+ 110 -

where g and a < 1/2 are parameters regulating the excitability of the node. Unlike
Eq. (3.39), the parameter g has units of conductance per node since the nodes of Ran-
vier are discrete segments. An activated node may fail to excite the adjacent nodes if the
membrane potential does not reach u = a. In this model, the internodal distance must
satisfy (Erneux and Nicolis, 1993)

1 _aun(t)(un(t) — 1) (uy(t) —a) (3.43)

1—a

L<L*=
4a’r g

(3.44)

for propagation to be sustained. When the internodal distance L is smaller than L*,
propagation will fail. When the internodal distance is larger, propagation will succeed.
The propagation velocity for small L* — L follows (Binczak et al., 2001)

nga
~-—> /L(L*—L 3.45
which is maximum at L = L*/2. Since, in most myelinated axons, internodal distance
scales linearly with their radius (Waxman, 1980), the velocity of myelinated axons also

scales linearly with radius, v o< L o< p.

3.4 Compartmental models

We have seen that analytical solutions can be given for the voltage along a passive cable
with uniform geometrical and electrical properties. If we want to apply the above results in
order to describe the membrane potential along the dendritic tree of a neuron we face sev-
eral problems. Even if we neglect “active” conductances formed by nonlinear ion channels,
a dendritic tree is at most locally equivalent to a uniform cable. Numerous bifurcations and
variations in diameter and electrical properties along the dendrite render it difficult to find
a solution for the membrane potential analytically (Abbott et al., 1991).

Numerical treatment of partial differential equations such as the cable equation requires
a discretization of the spatial variable. Hence, all derivatives with respect to spatial vari-
ables are approximated by the corresponding quotient of differences. Essentially we are
led back to the discretized model of Fig. 3.5 that has been used as the starting point for the
derivation of the cable equation. After the discretization we have a large system of ordinary
differential equations for the membrane potential at the chosen discretization points as a
function of time. This system of ordinary differential equations can be treated by standard
numerical methods.



76 Dendrites and synapses

Fig. 3.8 Multi-compartment neuron model. Dendritic compartments with membrane capacitance C#
and transversal resistance R# are coupled by a longitudinal resistance r*V = (Rf +Ry)/2. External
input to compartment u is denoted by I*. Some or all compartments may also contain nonlinear ion
channels (variable resistor in leftmost compartment).

In order to solve for the membrane potential of a complex dendritic tree numerically,
compartmental models are used that are the result of the above mentioned discretiza-
tion. The dendritic tree is divided into small cylindric compartments with an approxima-
tively uniform membrane potential. Each compartment is characterized by its capacity and
transversal conductivity. Adjacent compartments are coupled by the longitudinal resistance
determined by their geometrical properties (see Fig. 3.8).

Once numerical methods are used to solve for the membrane potential along the den-
dritic tree, some or all compartments can be equipped with nonlinear ion channels as
well. In this way, effects of nonlinear integration of synaptic input can be studied. Apart
from practical problems that arise from a growing complexity of the underlying differen-
tial equations, conceptual problems are related to a drastically increasing number of free
parameters. To avoid these problems, all nonlinear ion channels responsible for generating
spikes are usually lumped together at the soma and the dendritic tree is treated as a pas-
sive cable. For a review of the compartmental approach we refer the reader to Bower and
Beeman (1995). In the following we illustrate the compartmental approach by a model of
a pyramidal cell.

Example: A multi-compartment model of a deep-layer pyramidal cell

Software tools such as NEURON (Carnevale and Hines, 2006) or GENESIS (Bower
and Beeman, 1995) enable researchers to construct detailed compartmental models of
any type of neuron. The morphology of such a detailed model is constrained by the
anatomical reconstruction of the corresponding “real” neuron. This is possible if length,
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Fig. 3.9 Bursting in a computational model of a deep layer cortical neuron. (a) Reconstruction of the
complete morphology indicating the location of injection and measurement sites marked “1” at the
soma, and “2” at the dendrite. (b) A current is injected into the dendrite (lower trace, marked “2”)
mimicking an excitatatory postsynaptic current (EPSC). The model responds to the current injection
in the dendrite with a voltage deflection at the dendrite (upper trace marked “2”) but hardly any
deflection at the soma (“1”). (c). A current pulse in the soma (lower trace, marked “1”) causes an
action potential at the soma (voltage trace marked “1”) that back-propagates as a broader voltage
pulse (“2”) into the dendrite. (d) Coincidence of somatic current pulse and dendritic EPSC activates
calcium currents in the dendrites and causes a burst of spikes in the soma. (e) A single, but large
EPSC-shaped dendritic current can also activate calcium currents and leads to a delayed burst of
spikes in the soma. Image modified from Hay et al. (2011).

size and orientation of each dendritic segment are measured under a microscope, after
the neuron has been filled with a suitable dye. Before the anatomical reconstruction,
the electrophysiological properties of the neuron can be characterized by stimulating
the neuron with a time-dependent electric current. The presence of specific ion channel
types can be inferred, with genetic methods, from the composition of the intracellular
liquid, extracted from the neuron (Toledo-Rodriguez et al., 2004). The distribution of ion
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channels across the dendrite is probably the least constrained parameter. It is sometimes
inferred from another set of experiments on neurons belonging to the same class. All the
experimental knowledge about the neuron is then condensed in a computational neuron
model. A good example is the model of a deep-layer cortical neuron with active dendrites
as modeled by Hay et al. (2011).

The complete morphology is divided into 200 compartments, none exceeding 20 pm
in length. Each compartment has its specific dynamics defined by intracellular ionic
concentration, transversal ion flux through modeled ion channels, and longitudinal cur-
rent flux to connected compartments. The membrane capacitance is set to 1 uF/cm? for
the soma and axon and to 2 pF/cm? in the dendrites to compensate for the presence of
dendritic spines. A cocktail of ionic currents is distributed across the different compart-
ments. These are:

the fast inactivating sodium current Iy, (Section 2.2.1),

the persistent sodium current Inzp (Section 2.3.3),

the non-specific cation current I, (Section 2.3.4),

the muscarinic potassium current Iy (Section 2.3.3),

the small conductance calcium-activated potassium current Ix|c,) (Section 2.3.4),

the fast non-inactivating potassium current Ixy3.1 (Rettig et al., 1992) which is very

similar to the model of potassium current of the Hodgkin—Huxley model in Table 2.1,

the high-voltage activated calcium current /iyya (mentioned in Section 2.3.3),

e the low-voltage activated calcium current I (Avery and Johnston, 1996; Randall and
Tsien, 1997) (similar to the HVA channel but different parameters),

e and a calcium pump (Section 2.3.3).

In addition, the model contains a slow and a fast inactivating potassium current /Ixp, Ikt,
respectively (Korngreen and Sakmann, 2000).

In the dendrites all these currents are modeled as uniformly distributed except I, Irpva
and Ir. The first one of these, ;,, is exponentially distributed along the main dendrite that
ascends from the deep layers with low ;, concentration to the top layers with large I,
concentration (Kole et al., 2006). The two calcium channels were distributed with a uni-
form distribution in all dendrites except for a single hotspot with a concentration 100 and
10 times higher for I1, and Igya, respectively. Finally, the strength of each ionic current
was scaled by choosing the maximal conductance gj,, that best fit experimental data.

This detailed compartmental model can reproduce quantitatively some features of the
deep-layer pyramidal neurons (Fig. 3.9). For example, a small dendritic current injection
results in a transient increase of the dendritic voltage, but only a small effect in the
soma (Fig. 3.9b). A sufficiently large current pulse in the soma initiates not only a spike
at the soma but also a back-propagating action potential traveling into the dendrites
(Fig. 3.9c). Note that it is the presence of sodium and potassium currents throughout the
dendrites that support the back-propagation. In order to activate the dendritic calcium
channels at the hotspot, either a large dendritic injection or a coincidence between the
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back-propagating action potential and a small dendritic injection is required (Fig. 3.9d,
e). The activation of calcium channels in the hotspot introduces a large and long (around
40 ms) depolarizing current that propagates forward to the soma where it eventually
causes a burst of action potentials.

3.5 Summary

“Real” neurons are complex biophysical and biochemical entities. Before designing a
model it is therefore necessary to develop an intuition for what is important and what
can be safely neglected. Synapses are usually modeled as specific ion channels that open
for a certain time after presynaptic spike arrival. The geometry of the neuron can play an
important role in the integration of incoming signals because the effect of synaptic input on
the somatic membrane potential depends on the location of the synapses on the dendritic
tree. Though some analytic results can be obtained for passive dendrites, it is usually nec-
essary to resort to numerical methods and multi-compartment models in order to account
for the complex geometry and presence of active ion channels on neuronal dendrites.

Literature

The book Dendrites (Stuart et al., 2007) offers a comprehensive review of the role and
importance of dendrites from multiple points of view. An extensive description of cable
theory as applied to neuronal dendrites can be found in the collected works of Wilfrid Rall
(Segev et al., 1994). NEURON (Carnevale and Hines, 2006) and GENESIS (Bower and
Beeman, 1995) are important tools to numerically solve the system of differential equations
of compartmental neuron models. There are useful repositories of neuronal morpholo-
gies (see http://NeuroMorpho.Org for instance) and of published models on ModelDB
(http://senselab.med.yale.edu/modeldb). The deep-layer cortical neuron discussed in
this chapter is described in Hay er al. (2011). Potential computational consequences of
nonlinear dendrites are described in Mel (1994).

Exercises

1. Biophysical synapse model and its relation to other models

(a) Consider Eq. (3.4) and discuss its relation to Eq. (3.2). Hint: (i) Assume that the time course
¥(¢) can be described by a short pulse (duration of 1 ms) and that the unbinding is on a time scale
B> IPmS. (ii) Assume that the interval between two presynaptic spike arrivals is much larger
than B~".

(b) Discuss the relation of the depressive synapse model in Eq. (3.8) with the biophysically model
in Eq. (3.4). Hint: (i) Assume that the interval between two presynaptic spikes is of the same order
Bfl, (ii) In Eq. (3.8) consider a variable x = P,/ P.
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2. Transmitter-gated ion channel
For each of the following statements state whether it is correct or wrong:
(a) AMPA channels are activated by glutamate.
(b) AMPA channels are activated by AMPA.
(c) If the AMPA channel is open, AMPA can pass through the channel.
(d) If the AMPA channel is open, glutamate can pass through the channel.
(e) If the AMPA channel is open, potassium can pass through the channel.
3. Cable equation
(a) Show that the passive cable equation for the current is

aJ . % . , J .
> i(t,x) = ) i(t,x) —i(t,x)+ > lext (1, X). (3.46)
(b) Set the external current to zero and find the mapping to the heat equation
p] 2
ay(ux) = ﬁy(t,x). 3.47)

Hint: Try y(t,x) = f(t)i(t,x) with some function f.
(c) Find the solution to the current equation in (a) for the infinite cable receiving a short current
pulse at time t = 0 and show that the corresponding equation for y satisfies the heat equation
in (b).
4. Non-leaky cable
(a) Redo the derivation of the cable equation for the case of an infinite one-dimensional passive
dendprite without transversal leak and show that the solution to the equation is of the form

t oo
u(x,t):/ dt’/ A Gyt —t',x —x) iexe(t',X) (3.48)

where Gy is a Gaussian of the form

x2

2no (1) P 202(t)"

Gy(x,t) = (3.49)

Determine 6 (t) and discuss the result.
(b) Use the method of mirror charges to discuss how the solution changes if the cable is semi-
infinite and extends from zero to infinity.
(c) Take the integral over space of the elementary solution of the non-leaky cable equation and
show that the value of the integral does not change over time. Give an interpretation of this result.
(d) Take the integral over space of the elementary solution of the normal leaky cable equation of
a passive dendrite and derive an expression for its temporal evolution. Give an interpretation of
your result.

5. Conduction velocity in unmyelinated axons
(a) Using the simplified ion channel dynamics of Eq. (3.39), transform x and t to dimensionless
variables using effective time and electrotonic constants.
(b) A traveling pulse solution will have the form u(x,t) = ii(x — vt) where v is the conduction
velocity. Find the ordinary differential equation that rules i.

(c) Show that ii(y) = ) with traveling speed v = 1=22

1 . .
T+exp(y /5 sa solution.
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Dimensionality reduction and phase plane analysis

The firing of action potentials has been successfully described by the Hodgkin—Huxley
model, originally for the spikes in the giant axon of the squid but also, with appropriate
modifications of the model, for other neuron types. The Hodgkin—Huxley model is defined
by four nonlinear differential equations. The behavior of high-dimensional systems of non-
linear differential equations is difficult to visualize — and even more difficult to analyze. For
an understanding of the firing behavior of the Hodgkin—Huxley model, we therefore need
to turn to numerical simulations of the model. In Section 4.1 we show, as an example,
some simulation results in search of the firing threshold of the Hodgkin—Huxley model.
However, it remains to show whether we can get some deeper insights into the observed
behavior of the model.

Four equations are in fact just two more than two: in Section 4.2 we exploit the temporal
properties of the gating variables of the Hodgkin—Huxley model so as to approximate the
four-dimensional differential equation by a two-dimensional one. Two-dimensional differ-
ential equations can be studied in a transparent manner by means of a technique known as
“phase plane analysis.” Section 4.3 is devoted to the phase plane analysis of generic neuron
models consisting of two coupled differential equations, one for the membrane potential
and the other for an auxiliary variable.

The mathematical tools of dimension reduction and phase plane analysis that are pre-
sented in Sections 4.2 and 4.3 will be repeatedly used throughout this book, in particular
in Chapters 5, 6, 16 and 18. As a first application of phase plane analysis, we study in
Section 4.4 the classification of neurons into type I and type II according to their frequency—
current relation. As a second application of phase plane analysis, we return in Section 4.5
to some issues around the notion of a “firing threshold,” which will be sketched now.

4.1 Threshold effects

Many introductory textbooks of neuroscience state that neurons fire an action potential
if the membrane potential reaches a threshold. Since the onset of an action potential is
characterized by a rapid rise of the voltage trace, the onset points can be detected in exper-
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iment recordings (Fig. 4.1a). Intuitively, the onset of an action potential occurs when the
membrane potential crosses the firing threshold.

The firing threshold is not only a useful concept for experimental neuroscience, it is also
at the heart of most integrate-and-fire models and therefore central to Parts II and III of this
book. But does a firing threshold really exist?

Experimenters inject currents into a single neuron to probe its firing characteristics.
There is a large choice of potential current wave forms, but only few of these are rou-
tinely used in many labs. In this section we use current pulses and steps in order to explore
the threshold behavior of the Hodgkin—Huxley model.

4.1.1 Pulse input

A Hodgkin—Huxley model is stimulated by a short current pulse of 1 ms duration. If the
stimulus is strong enough, it elicits a spike. In Fig. 4.1a,b the amplitude of the stimulating
current is only slightly increased between the first and second current pulse. The membrane
potential returns directly to the resting potential after the stimulus, while the neuron fires
a spike in response to the second pulse. This seems to suggest that the voltage threshold
for spike firing is just above the maximum voltage that is reached after the first current
injection (upper horizontal dashed line in Fig. 4.1b.

Unfortunately, however, such an interpretation is incorrect. If we use a longer current
pulse of 100 ms duration and apply the same argument as before, we would find a different
voltage threshold, indicated by the lower horizontal dashed line in Fig. 4.1b.

Despite the fact that neuronal action potential firing is often treated as a threshold-
like behavior, such a threshold is not well defined mathematically (Rinzel and Ermen-
trout, 1998; Koch et al., 1995). For practical purposes, however, the transition can be
treated as a threshold effect. However, the threshold we find depends on the stimulation
protocol.

For a mathematical discussion of the threshold phenomenon, it is helpful to reduce the
system of four differential equations to two equations; this is the topic of Section 4.2. We
will return to pulse currents in Section 4.5.

Example: Short current pulse as voltage step

The above argument excludes a voltage threshold, but could there be a current thresh-
old? Instead of injecting a current of 1 ms duration we can use a shorter pulse that lasts
only half as long. Numerically, we find that the minimal current necessary to trigger
an action potential of the Hodgkin—Huxley model is now twice as large as before. We
conclude that, for short current pulses, it is not the amplitude of the current that sets
the effective firing threshold, but rather the integral of the current pulse or the charge.
Indeed, the more charge we put on the membrane the higher the voltage, simply because
of the capacitance C of the membrane. For very short current pulses
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Fig. 4.1 Firing threshold. (a) Experimental recording of membrane voltage (top) during stimulation
with a time-dependent current (bottom). The onset of spikes, defined as the moment when the voltage
starts its upswing, is marked by open circles. The lowest and highest onset voltage during a recording
of 20 s are marked by dotted horizontal lines. Inset: Histogram of onset voltages; adapted from Mensi
et al. (2013). (b) Stimulation of the Hodgkin—Huxley model with pulse and step current. Voltage (top)
in response to pulses and steps (bottom). The apparent voltage threshold is higher (dotted lines in top
panel) for a pulse than for a step current. The critical currents are 16.6 wA/cm? for the 1 ms pulse and
3.31 pA/cm? for the step. Parameters of the Hodgkin—-Huxley model as in Table 2.1.

I(t)=qo(t) = iii%% for0 <t <A and 0 otherwise. 4.1)

The voltage of the Hodgkin—Huxley model increases at the moment of current injection
by an amount Au = g/C where g is the charge of the current pulse (see Section 1.3.2).

If the model was at rest for ¢ < 0, the new voltage u = s + Au can be used as the
initial condition for the numerical integration of the Hodgkin—Huxley model for times
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t > 0. Thus, a short current pulse amounts to a step-like increase of the voltage by a fixed
amount.

4.1.2 Step current input

In Chapter 2 we have seen that a constant input current Iy > g can generate regular firing.
In this paragraph we study the response of the Hodgkin—Huxley model to a step current of
the form

1) =1 +AIO(r). (4.2)

Here O(z) denotes the Heaviside step function, i.e., ©(r) = 0 for 7 < 0 and ©(r) = 1 for
t > 0. At t+ = 0 the input jumps from a fixed value [} to a new value I, = I} + Al; see
Fig. 4.2a. We may wonder whether spiking for # > 0 depends only on the final value I, or
also on the step size Al.

The answer to this question is given by Fig. 4.2d. A large step Al facilitates the spike
initiation. For example, a target value I, = 2 pA/cm? elicits a spike, provided that the step
size is large enough, but does not cause a spike if the step is small. The letter S in Fig. 4.2d
denotes the regime where only a single spike is initiated. Repetitive firing (regime R) is
possible for I, > 2.6 uA/cm?, but must be triggered by sufficiently large current steps.

‘We may conclude from Fig. 4.2d that, when probing with step currents, there is neither a
unique current threshold for spike initiation nor for repetitive firing. The trigger mechanism
for action potentials depends not only on I, but also on the size of the current step Al.

Biologically, the dependence upon the step size arises from the different time constants
of activation and inactivation of the ion channels. Mathematically, the stimulation with step
currents can be analyzed transparently in two dimensions (Sections 4.3 and 4.4).

4.2 Reduction to two dimensions

A system of four differential equations, such as the Hodgkin—Huxley model, is difficult to
analyze, so that normally we are limited to numerical simulations. A mathematical analysis
is, however, possible for a system of two differential equations.

In this section we perform a systematic reduction of the four-dimensional Hodgkin—
Huxley model to two dimensions. To do so, we have to eliminate two of the four variables.
The essential ideas of the reduction can also be applied to detailed neuron models that may
contain many different ion channels. In these cases, more than two variables would have to
be eliminated, but the procedure would be completely analogous (Kepler et al., 1992).

4.2.1 General approach

We focus on the Hodgkin—Huxley model discussed in Chapter 2 and start with two quali-
tative observations. First, we see from Fig. 2.3b that the time scale of the dynamics of the
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Fig. 4.2 Phase diagram for stimulation with a step current. (a) The input current /() changes at# =0
from /) to Ip. (b), (c), (e). Sample responses of the Hodgkin—Huxley model to step current input. (d)
The outcome of the simulation experiment as a function of the final current /, and the step size
Al =1, —I;. Three regimes denoted by S, R, and Q may be distinguished. In Q no action potential is
initiated (quiet regime). In S, a single spike is initiated by the current step (single spike regime). In R,
periodic spike trains are triggered by the current step (repetitive firing). Examples of voltage traces
in the different regimes are presented in the smaller graphs (b, c, ) with stimulation parameters
indicated by the filled circles in (d). Note that for the same final current /; (e.g., (d) 2.0 nA/cm?), the
neuron model emits a spike if the current step Al is large enough (regime S), or no spike if the step is
too small. For a final current I, = 3 uA/cm?, the model exhibits bistability between repetitive firing
and quiescence.

gating variable m is much faster than that of the variables n and #.Moreover, the time scale
of m is fast compared with the membrane time constant T = C/gp, of a passive membrane,
which characterizes the evolution of the voltage # when all channels are closed. The rela-
tively rapid time scale of m suggests that we may treat m as an instantaneous variable. The
variable m in the ion current equation (2.5) of the Hodgkin—Huxley model can therefore
be replaced by its steady-state value, m(z) — mg[u(z)]. This is what we call a quasi steady-
state approximation which is possible because of the “separation of time scales” between
fast and slow variables.

Second, we see from Fig. 2.3b that the time constants 7,(«) and 7;,(u) have similar
dynamics over the voltage u. Moreover, the graphs of ng(u) and 1 — hg(u) in Fig. 2.3a
are also similar. This suggests that we may approximate the two variables n and (1 — h)
by a single effective variable w. To keep the formalism slightly more general we use a
linear approximation (b — k) = an with some constants a,b and set w = b — h = an. With
h=b—w,n=w/a,and m = my(u), Egs. (2.4)—(2.5) become

du

€S = —galmo(w)] (b—w) (4~ Ena) g

4
2) w—E) - (u—EL)+1, (43)
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Fig. 4.3 Phase plane u, w of a Hodgkin—Huxley model reduced to two dimensions. (a) The reduction
of the Hodgkin—Huxley model leads to a system of two equations, 7 du/dt = F (u,w) + Rl and 7,
dw/dt = G(u,w). The ensemble of points with F(u,w) = 0 and G(u,w) = 0 is shown as a function
of voltage u and recovery variable w, based on Egs. (4.3), (4.20) and (4.21). (b) As in (a), but for the
Morris—Lecar model (see text for details).
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Fig. 4.4 Close-up of Fig. 4.3a and b. Solid lines: the sets of points with F (u,w) = 0 and G(u,w) =0
are determined in the absence of stimulation (I = 0). Dashed line: in the presence of a constant
current [ = Iy > 0, the set of points with du/dr = 0 is given F(u,w) = —Rly. The curve G(u,w) =0
characterizing the points with dw/dr = 0 starts (for u — —oo) nearly horizontally at w = 0 and does
not change under stimulation.

or

du

1
—==[F RI 4.4
= () +RI). (44)
with R = g !, T = RC and some function F. We now turn to the three equations (2.9).
The m equation has disappeared since m is treated as instantaneous. Instead of the two
equations (2.9) for n and h, we are left with a single effective equation

dw 1

— = —G(u,w), 4.5

a1, (1, w) (45)

where T, is a parameter and G a function that interpolates between dn/dt and dh/dt (see
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Section 4.2.2). Equations (4.4) and (4.5) define a general two-dimensional neuron model.
If we start with the Hodgkin—Huxley model and implement the above reduction steps we
arrive at functions F(u,w) and G(u,w) which are illustrated in Figs. 4.3a and 4.4a. The
mathematical details of the reduction of the four-dimensional Hodgkin—Huxley model to
the two equations (4.4) and (4.5) are given below.

Before we go through the mathematical steps, we present two examples of
two-dimensional neuron dynamics which are not directly derived from the Hodgkin—Huxley
model, but are attractive because of their mathematical simplicity. We will return to these
examples repeatedly throughout this chapter.

Example: Morris-Lecar model

Morris and Lecar (1981) proposed a simplified two-dimensional description of neu-
ronal spike dynamics. A first equation describes the evolution of the membrane potential
u, the second equation the evolution of a slow “recovery” variable . The Morris—Lecar
equations read

d

g = 8o (e=Vi) ~ g (u=Va) —g (e =Vi) +,  (46)
dw I .
o= _71'(14) [W—wo(u)] . 4.7

If we compare Eq. (4.6) with Eq. (4.3), we note that the first current term on the right-
hand side of Eq. (4.3) has a factor (b — w) which closes the channel for high voltage
and which is absent in (4.6). Another difference is that neither 7y nor w in Eq. (4.6)
have exponents. To clarify the relation between the two models, we could set 7y (u) =
[mo(u)]? and W = (w/a)*. In the following we consider Eqs. (4.6) and (4.7) as a model
in its own right and drop the hats over mg and w.

The equilibrium functions shown in Fig. 2.3a typically have a sigmoidal shape. It is
reasonable to approximate the voltage dependence by

mo(u) = % [1 + tanh <””1 )] , (4.8)

uz

1 _
wo(u) = = [1 + tanh <” ”3)] , (4.9)

2 Ug

with parameters uy, .. .,us, and to approximate the time constant by
T

T(u) = —F— (4.10)

cosh (“{u ’:3 )

with a further parameter 7,,. With the above assumptions, the zero-crossings of functions
F(u,w) and G(u,w) of the Morris-Lecar model have the shape illustrated in Fig. 4.3b.
The Morris—Lecar model (4.6)—(4.10) gives a phenomenological description of action
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potentials. We shall see later on that the mathematical conditions for the firing of action
potentials in the Morris—Lecar model can be discussed by phase plane analysis.

Example: FitzHugh-Nagumo model

FitzHugh and Nagumo where probably the first to propose that, for a discussion of
action potential generation, the four equations of Hodgkin and Huxley can be replaced
by two, i.e., Egs. (4.4) and (4.5). They obtained sharp pulse-like oscillations reminiscent
of trains of action potentials by defining the functions F (u,w) and G(u,w) as

1
F(u,w) :ufglffw,
G(u,w) =bo+bju—w, 4.11)

where u is the membrane voltage and w is a recovery variable (FitzHugh, 1961; Nagumo
et al., 1962). Note that both ' and G are linear in w; the sole nonlinearity is the cubic
term in u. The FitzHugh—Nagumo model is one of the simplest models with non-trivial
behavior lending itself to a phase plane analysis, which will be discussed below in Sec-
tions 4.3-4.5.

4.2.2 Mathematical steps (*)

The reduction of the Hodgkin—Huxley model to Egs. (4.4) and (4.5) presented in this sec-
tion is inspired by the geometrical treatment of Rinzel (1985); see also the slightly more
general method of Abbott and Kepler (1990) and Kepler et al. (1992).

The overall aim of the approach is to replace the variables n and / in the Hodgkin—
Huxley model by a single effective variable w. At each moment of time, the values
(n(t),h(r)) can be visualized as points in the two-dimensional plane spanned by n and
h; see Fig. 4.5b. We have argued above that the time course of the scaled variable an is
expected to be similar to that of b — k. If, at each time, an(t) were equal to b — h(r), then all
possible points (n,/) would lie on the straight line & = b — an which changes through (0,5)
and (1,b—a). It would be unreasonable to expect that all points (n(z), h(r)) that occur dur-
ing the temporal evolution of the Hodgkin—Huxley model fall exactly on that line. Indeed,
during an action potential (Fig. 4.5a), the variables n(t) and h(t) stay close to a straight line,
but are not perfectly on it (Fig. 4.5b). The reduction of the number of variables is achieved
by a projection of those points onto the line. The position along the line 7 = b — an gives
the new variable w; see Fig. 4.6. The projection is the essential approximation during the
reduction.

To perform the projection, we will proceed in three steps. A minimal condition for the
projection is that the approximation introduces no error while the neuron is at rest. As a first
step, we therefore shift the origin of the coordinate system to the rest state and introduce
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Fig. 4.5 Similarity of gating variables / and n. (a). After stimulation of the Hodgkin—Huxley model
by a short current pulse, the membrane potential (solid line) exhibits an action potential. The time
course of the variables n (dashed line) mirrors that of the variable % (dot-dashed). (b). During and
after the action potential, the trajectory of the variables n(r) and h(f) (solid line) stays very close
to the straight line 4 = b — an (dashed) with slope a and offset b. The point (nq(urest ), 1o (Urest)) is
indicated with a circle.

new variables

X =n—ng(Urest), (4.12)

vy ="h—ho(Urest) - (4.13)

At rest, we have x =y = 0.

Second, we turn the coordinate system by an angle o which is determined as follows.
For a given constant voltage u, the dynamics of the gating variables n and & approaches
the equilibrium values (no(u),ho(u)). The points (ng(u),ho(u)) as a function of u define a
curve in the two-dimensional plane. The slope of the curve at u = u,.y yields the rotation
angle o via

dh
o dil? |Mresl
du |Mrest

Rotating the coordinate system by o turns the abscissa e of the new coordinate system in
a direction tangential to the curve. The coordinates (z1,z2) in the new system are

(zl)( cos ot sma)<x>. @.15)
P —sina  coso y
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Fig. 4.6 Mathematical reduction: arbitrary
points (n,h) are projected onto the line in
direction of e; and passing through the point
(no(urest), ho(trest)). The dotted line gives
the curve (ng(u),ho(u)).

hO(uresl)

o (n,h)

nO(urest) 1 n

Third, we set zo = 0 and retain only the coordinate z; along e. The inverse transform,

<x>:(c9sa —sinoc) (zl ), 4.16)
y sinot  coso 22

yields x = z; cos & and y = z; sin & since z = 0. Hence, after the projection, the new values
of the variables n and & are

7' = no(Urest) +21 cos o, 4.17)
H = ho(ugest) + 21 sina. (4.18)

In principle, z; can directly be used as the new effective variable. From (4.15) we find
the differential equation

dz dn . dh

= coso— =, 4.1

” cosocdt —&-smadt 4.19)
We use Eq. (2.6) and replace, on the right-hand side, n(¢) and h(¢) by (4.17) and (4.18).

The result is

dzp cos g L0+ no(Urest) —no(u) Gino ! sina + Ao (ttrest) — ho(u) 420)
dr ‘L’n(u) Th(u)
which is of the form dz; /df = G(u,z1), as desired.
To see the relation to Egs. (4.3) and (4.5), it is convenient to rescale z; and define

w = —tan ot ng(Urest) — 21 SINCQL. 4.21)

If we introduce a = —tan o and b = ang(urest) + ho(Urest), we find from Eq. (4.17) the
variable n’ = w/a and from Eq. (4.18) i = b — w, which are exactly the approximations
that we used in (4.3). The differential equation for the variable w is of the desired form
dw/dt = G(u,w) and can be found from Egs. (4.20) and (4.21). The resulting function
G(u,w) of the two-dimensional model is illustrated in Fig. 4.3a.



4.3 Phase plane analysis 91

(a) (b)
1 [ A A A A A A A 1
VW F S XX K x
[ A N A ros -
LA R S S A S A 4 U
0.5 Wt 7 s roror ey A 0.5
\ vy oy » ’ r ’r
N s s s ’ o
S N : : 0
N N <
< A\r s s - N
. A PV~ v
0521 ¢ 2V 05
= i1 4 ¢ v e e o o» -
I A B A G
AR AR AR R A 2 AP A S A A -1
-2 1 0 1 2 -2 -1 0 1 2
u u

Fig. 4.7 (a) Phase portrait of the FitzHugh—-Nagumo model. The u-nullcline (curved line) and the
w-nullcline (straight line) intersect at the three fixed points. The direction of the arrows indicates
the flow (i1,3)7. (b) Arrows on the u-nullcline point vertically upward or downward, while on the
w-nullcline arrows are horizontal. In the neighborhood of the fixed points, arrows have a short length
indicating slow movement. At the fixed point, the direction of the arrows change.

Example: Further simplification
We may further approximate the time constants 7, and 7, by a common function 7(u)
so that the dynamics of w is
dw 1
— =——— w—wo(u)|, 4.22
i [w—wo(u)] 4.22)

with a new equilibrium function wq(u) that is a linear combination of the functions A
and ng. From Egs. (4.20) and (4.21) we find

wo(u) = —sin o [cos ocng(u) + sin aho(u) — bsinar]. (4.23)

In practice, wo(«) and 7(u) can be fitted by the expressions (4.9) and (4.10), respectively.

4.3 Phase plane analysis

In two-dimensional models, the temporal evolution of the variables (u,w)? can be visual-
ized in the so-called phase plane. From a starting point (u(¢),w(t))” the system will move
in a time At to a new state (u(t + At),w(t + At))T which has to be determined by integra-

tion of the differential equations (4.4) and (4.5). For At sufficiently small, the displacement
(Au, Aw)T is in the direction of the flow (it,w)7, i.e.,

Au u
<Aw> = (w) At 4.24)
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(a) Stable (node) (b) Stable or unstable
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Fig. 4.8 Four examples of phase portraits around a fixed point. Case (a) is stable, cases (c) and (d)
are unstable. Stability in case (b) cannot be decided with the information available from the picture
alone. Cases (c) and (d) are saddle points.

which can be plotted as a vector field in the phase plane. Here i = du/dt is given by (4.4)
and vw = dw/dr by (4.5). The flow field is also called the phase portrait of the system. An
important tool in the construction of the phase portrait is the nullcline, which is introduced
now.

4.3.1 Nullclines

Let us consider the set of points with & = 0, called the u-nullcline. The direction of flow on
the u-nullcline is in the direction of (0,+)7, since & = 0. Hence arrows in the phase portrait
are vertical on the u-nullcline. Similarly, the w-nullcline is defined by the condition w = 0
and arrows are horizontal. The fixed points of the system, defined by i = w = 0 are given
by the intersection of the u-nullcline and the w-nullcline. In Fig. 4.7 we have three fixed
points.

So far we have argued that arrows on the u-nullcline are vertical, but we do not know
yet whether they point up or down. To get the extra information needed, let us return
to the w-nullcline. By definition, it separates the region with w > 0 from the area with
w < 0. Suppose we evaluate G(u,w) on the right-hand side of Eq. (4.5) at a single point,
e.g., at (0,—1). If G(0,—1) > 0, then the whole area on that side of the w-nullcline has
w > 0. Hence, all arrows along the u-nullcline that lie on the same side of the w-nullcline
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Fig. 4.9 Bounding surface around an unstable fixed point and the limit cycle (schematic figure).

as the point (0,—1) point upward. The direction of arrows normally! changes where the
nullclines intersect; see Fig. 4.7b.

4.3.2 Stability of Fixed Points

In Fig. 4.7 there are three fixed points, but which of these are stable? The local stability of
a fixed point (upp,wrp) is determined by linearization of the dynamics at the intersection.
With x = (u—upp,w — wFp)T, we have after the linearization

d  (F, F
4. 42
a (Gu Gw> o (4.25)

where F, = dF /du, F,, = dF /dw, ..., are evaluated at the fixed point. To study the stability
we set x(¢) = e exp(Ar) and solve the resulting eigenvalue problem. There are two solutions
with eigenvalues A, and A_ and eigenvectors e and e_, respectively. Stability of the fixed
point x = 0 in Eq. (4.25) requires that the real part of both eigenvalues be negative. The
solution of the eigenvalue problem yields A, +A_ = F, + G, and A, A_ = F,G,, — F,,G,,.
The necessary and sufficient condition for stability is therefore

F,+G,<0 and F,G,—F,G,>0. (4.26)

If F,G,, — F,,G, < 0, then the imaginary part of both eigenvalues vanishes. One of the
eigenvalues is positive, the other one negative. The fixed point is then called a saddle point.

Eq. (4.25) is obtained by Taylor expansion of Egs. (4.4) and (4.5) to first order in x. If
the real part of one or both eigenvalues of the matrix in Eq. (4.25) vanishes, the complete
characterization of the stability properties of the fixed point requires an extension of the
Taylor expansion to higher order.

!Exceptions are the rare cases where the function F or G is degenerate: for example, F (i, w) = w?.
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Example: Linear model

Let us consider the linear dynamics

n=au—w,
w=¢(bu—w), 4.27)

with positive constants b, € > 0. The u-nullcline is w = au, the w-nullcline is w = bu.
For the moment we assume a < 0. The phase diagram is that of Fig. 4.8a. Note that by
decreasing the parameter £, we may slow down the w-dynamics in Eq. (4.27) without
changing the nullclines.

Because F, + G, =a—¢ < 0 fora < 0 and F,G,, — F,,G, = € (b—a) > 0, it follows
from (4.26) that the fixed point is stable. Note that the phase portrait around the left fixed
point in Fig. 4.7 has locally the same structure as the portrait in Fig. 4.8a. We conclude
that the left fixed point in Fig. 4.7 is stable.

Let us now keep the w-nullcline fixed and turn the u-nullcline by increasing a to pos-
itive values; see Fig. 4.8b and c. Stability is lost if @ > min{e,b}. Stability of the fixed
point in Fig. 4.8b can therefore not be decided without knowing the value of €. On
the other hand, in Fig. 4.8c we have a > b and hence F,G,, — F,,G, = €(b—a) < 0.
In this case one of the eigenvalues is positive (A1 > 0) and the other one nega-
tive (A_ < 0), hence we have a saddle point. The imaginary parts of the eigenvalues
vanish. The eigenvectors e_ and e are therefore real and can be visualized in the
phase space. A trajectory through the fixed point in the direction of e_ is attracted
toward the fixed point. This is, however, the only direction by which a trajectory may
reach the fixed point. Any small perturbation around the fixed point which is not
strictly in the direction of e; will grow exponentially. A saddle point as in Fig. 4.8¢c
plays an important role in so-called type I neuron models that will be introduced in
Section 4.4.1.

For the sake of completeness we also study the linear system

u=—au+w,
w=¢e(bu—w), with0 <a<b, (4.28)

with positive constants a, b, and €. This system is identical to Eq. (4.27) except that the
sign of the first equation is flipped. As before we have nullclines w = au and w = bu; see
Fig. 4.8d. Note that the nullclines are identical to those in Fig. 4.8b, only the direction
of the horizontal arrows on the w-nullcline has changed.

Since F,G,, — F,G, = € (a — b), the fixed point is unstable if a < b. In this case, the
imaginary part of the eigenvalues vanish and one of the eigenvalues is positive (1 > 0)
while the other one is negative (A— < 0). Thus the fixed point can be classified as a
saddle point.

One of the attractive features of phase plane analysis is that there is a direct method
to show the existence of limit cycles. The theorem of Poincaré-Bendixson (Hale and
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Fig. 4.10 (a) The nullclines of the FitzZHugh—Nagumo model for zero input. The thin curved line
is the u-nullcline; the w-nullcline is the straight line, w = by + bju, with by = 0.9,b; = 1.0. The
thick line is a trajectory that starts at (—2,—0.5) (open square) and converges to the fixed point at
(—1.1,-0.5). (b) Time course of the membrane potential of the trajectory shown in (a). (c) Same as
in (a) but with positive input / = 2 so that the fixed point in (a) is replaced by a limit cycle (thick
line). (d) Voltage time course of the trajectory shown in (c). Trajectories are the result of numerical
integration of Egs. (4.29) and (4.30) with € = 1.25.

Kocac, 1991) tells us that, if (i) we can construct a bounding surface around a fixed
point so that all flux arrows on the surface are pointing toward the interior, and (ii) the
fixed point in the interior is repulsive (real part of both eigenvalues positive), then there
must exist a stable limit cycle around that fixed point.

The proof follows from the uniqueness of solutions of differential equations, which
implies that trajectories cannot cross each other. If all trajectories are pushed away from
the fixed point, but cannot leave the bounded surface, then they must finally settle on a
limit cycle; see Fig. 4.9. Note that this argument holds only in two dimensions.

In dimensionless variables the FitzHugh—Nagumo model is

B I 4.2
m u 3u w1, (4.29)
d

Y e(bo+bru—w). (4.30)
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Fig. 4.11 (a) Gain function for models of type I. The frequency v during a limit cycle oscillation
is a continuous function of the applied current /. (b) The gain function of type II models has a
discontinuity.

Time is measured in units of 7, and € = 7/1, is the ratio of the two time scales. The
u-nullcline is w = u — /3 + 1 with maxima at u = +1. The maximal slope of the
u-nullcline is dw/du = 1 at u = 0; for I = 0 the u-nullcline has zeros at 0 and ++/3. For
I # 0 the u-nullcline is shifted vertically. The w-nullcline is a straight line w = by + by u.
For by > 1, there is always exactly one intersection, for any /. The two nullclines are shown
in Fig. 4.10.

A comparison of Fig. 4.10a with the phase portrait of Fig. 4.8a, shows that the fixed
point is stable for I = 0. If we increase I the intersection of the nullclines moves to the
right; see Fig. 4.10c. According to the calculation associated with Fig. 4.8b, the fixed point
loses stability as soon as the slope of the u-nullcline becomes larger than €. It is possible
to construct a bounding surface around the unstable fixed point so that we know from the
Poincaré—Bendixson theorem that a limit cycle must exist. Figures 4.10a and 4.10c show
two trajectories, one for I = 0 converging to the fixed point and another one for I =2
converging toward the limit cycle. The horizontal phases of the limit cycle correspond to
a rapid change of the voltage, which results in voltage pulses similar to a train of action
potentials; see Fig. 4.10d.

4.4 Type I and type II neuron models

We have already seen in Chapter 2 that neuron models fall into two classes: those with a
continuous frequency—current curve are called type I whereas those with a discontinuous
frequency—current curve are called type II. The characteristic curves for both model types
are illustrated in Fig. 4.11. The onset of repetitive firing under constant current injection is
characterized by a minimal current Iy, also called the rheobase current.

For two-dimensional neuron models, the firing behavior of both neuron types can be
understood by phase plane analysis. To do so we need to observe the changes in structure
and stability of fixed points when the current passes from a value below Iy to a value just
above Iy, where Iy determines the onset of repetitive firing. Mathematically speaking, the
point Iy where the transition in the number or stability of fixed points occurs is called a
bifurcation point and / is the bifurcation parameter.
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Fig. 4.12 Saddle-node bifurcation. The u-nullcline is represented as a parabola that moves upward
as the current is increased (from left to right). The saddle point is shown as an open circle and the
node as a filled circle. When the current is increased, the two fixed points, which are initially far apart
(left), move closer together (middle) and finally annihilate (right).

Example: Number of fixed points changes at bifurcation

Let us recall that the fixed points of the system lie at the intersection of the u-nullcline
with the w-nullcline. Fig. 4.3 shows examples of two-dimensional neuron models where
the u-nullcline crosses the w-nullclines three times so that the models exhibit three fixed
points. If the external driving current / is slowly increased, the u-nullcline shifts verti-
cally upward.? If the driving current / becomes strong enough, the two left-most fixed
points merge and disappear; see Fig. 4.4. The moment when the two fixed points dis-
appear is the bifurcation point. At this point a qualitative change in the dynamics of the
neuron model is observed, e.g., the transition from the resting state to periodic firing.
These changes are discussed in the following subsections.

4.4.1 Type I models and saddle-node-onto-limit-cycle bifurcation

Neuron models with a continuous gain function are called type I. Mathematically, a saddle-
node-onto-limit-cycle bifurcation generically gives rise to a type I behavior, as we will
explain now.

For zero input and weakly positive input, we suppose that our neuron model has three
fixed points in a configuration such as that in Fig. 4.13: a stable fixed point (node) to the
left, a saddle point in the middle, and an unstable fixed point to the right. If / is increased,
the u-nullcline moves upward and the stable fixed point merges with the saddle and disap-
pears (Fig. 4.12). We are left with the unstable fixed point around which there must be a
limit cycle provided the flux is bounded. If the limit cycle passes through the region where
the saddle and node disappeared, the scenario is called a saddle-node-onto-limit-cycle
bifurcation.

Can we say anything about the frequency of the limit cycle? Just before the transition
point where the two fixed points merge, the system exhibits a stable fixed point which
(locally) attracts trajectories. As a trajectory gets close to the stable fixed point, its velocity

'Tt may also undergo some changes in shape, but these are not relevant for the following discussion.
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Fig. 4.13 (a) The nullclines of the Morris—Lecar model for zero input. The w-nullcline is flat at low
u but increases monotonically above u = —20, the u-nullcline is the nonlinear curve crossing the w-
nullcline in three points. (a) Trajectory starting at (—65,—0.15) (open square) converges to the stable
fixed point at (-59,0) (filled circle). (b) Time course of the membrane potential of the trajectory shown
in (a). (c) Same as in (a) but with positive input / = 45. The stable fixed point in (a) has merged with
the saddle (open circle in (a)) and disappeared leaving a limit cycle around the third, unstable, fixed
point. (d) Voltage time course of the trajectory shown in (c). Trajectories are the results of numerical
integration of Egs. (4.6)—(4.10).

decreases until it finally stops at the fixed point. Let us now consider the situation where
the driving current is a bit larger so that I = Iy. This is the transition point, where the two
fixed points merge and a new limit cycle appears. At the transition point the limit cycle has
zero frequency because it passes through the two merging fixed points where the velocity
of the trajectory is zero. If I is increased a little, the limit cycle still “feels” the “ghost” of
the disappeared fixed points in the sense that the velocity of the trajectory in that region is
very low. While the fixed points have disappeared, the “ruins” of the fixed points are still
present in the phase plane. Thus the onset of oscillation is continuous and occurs with zero
frequency. Models which fall into this class are therefore of type I; see Fig. 4.11.

From the above discussion it should be clear that, if we increase I, we encounter a
transition point where two fixed points disappear, namely, the saddle and the stable fixed
point (node). At the same time a limit cycle appears. If we come from the other side, we
have first a limit cycle which disappears at the moment when the saddle-node pair shows
up. The transition is therefore called a saddle-node bifurcation on a limit cycle.



4.4 Type I and type Il neuron models 99
(b)

7
100 x w

f

;60 —40 =20 0 20 4I 60
u [mV]

(c) (d)

1.0
0.8
X 3
. 0.6 % -
().4 8 v /r_
0.2 Tap T ot T
0.0 4l 7 x A 4 4 4 /:
o AV A I R Y e
702 1 1 1 1 1 1 —6 CL 1 1 1 1 1 1 -
—60 —40 =20 0 20 40 60 —66 —64 —62 —60 —58 —56 —54 —52
u [mV] u [mV]

Fig. 4.14 Reduced Hodgkin—Huxley model with nullclines and dynamics of a type I model. (a) For
weakly positive input, the u-nullcline has three intersections with the w-nullcline. (b) Zoom onto
the two left-most fixed points. A trajectory (thick solid line) is attracted toward the left fixed point.
(c) For input I > Ig, the u-nullcline is shifted vertically and only one fixed point remains which is
unstable. The trajectory starting from the same initial condition as in (a) turns into a limit cycle. (d)
Zoom onto the same region as in (b). The limit cycle passes through the region where the two fixed
points have been before, but these fixed points have now disappeared. The nearly vanishing length
of the arrows indicates that movement of the trajectory in this region is very slow giving rise to a
near-zero firing frequency.

Example: Morris-Lecar model

Depending on the choice of parameters, the Morris—Lecar model is of either type I
or type II. We consider a parameter set where the Morris—Lecar model has three fixed
points located such that two of them lie in the unstable region where the u#-nullcline has
large positive slope as indicated schematically in Fig. 4.13. Comparison of the phase
portrait of Fig. 4.13 with that of see Fig. 4.8 shows that the left fixed point is stable as in
Fig. 4.8a, the middle one is a saddle point as in Fig. 4.8c, and the right one is unstable
as in Fig. 4.8b provided that the slope of the u-nullcline is sufficiently positive. Thus
we have the sequence of three fixed points necessary for a saddle-node-onto-limit-cycle
bifurcation.
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Example: Hodgkin—Huxley model reduced to two dimensions

The reduced Hodgkin—Huxley model of Fig. 4.3a has three fixed points. Stability
analysis of the fixed points or comparison of the phase portrait of this model in Fig. 4.14a
with the standard cases in Fig. 4.8 shows that the left fixed point is stable, the middle
one is a saddle, and the right one is unstable. If a step current / is applied, the #-nullcline
undergoes some minor changes in shape, but mainly shifts upward. If the step is big
enough, two of the fixed points disappear. The resulting limit cycle passes through the
ruins of the fixed point; see Figs. 4.14c and 4.14d.

4.4.2 Type II models and saddle-node-off-limit-cycle bifurcation

There is no fundamental reason why a limit cycle should appear at a saddle-node bifurca-
tion. Indeed, in one-dimensional differential equations, saddle-node bifurcations are pos-
sible, but never lead to a limit cycle. Moreover, if a limit cycle exists in a two-dimensional
system, there is no reason why it should appear directly at the bifurcation point — it can
also exist before the bifurcation point is reached. In this case, the limit cycle does not pass
through the ruins of the fixed point and therefore has finite frequency. This gives rise to a
type II neuron model. The corresponding bifurcation can be classified as saddle-node-oft-
limit-cycle.

Example: Hodgkin—-Huxley model reduced to two dimensions

Fig. 4.15 shows the same neuron model as Fig. 4.14 except for one single change in
parameter: the time scale 7, in Eq. (4.5) for the w-dynamics is slightly faster. While the
position and shape of the nullclines is unchanged, the dynamics are different.

To understand the difference we focus on Fig. 4.15d. The limit cycle triggered by a
current step does not touch the region where the ruins of the fixed points lie, but passes
further to the right. Thus the bifurcation is of the type saddle-node-off-limit-cycle, the
limit cycle has finite frequency, and the neuron model is of type II.

Example: Saddle-node without limit cycle

Not all saddle-node bifurcations lead to a limit cycle. If the slope of the w-nullcline
of the FitzHugh—Nagumo model defined in Egs. (4.29) and (4.30) is smaller than 1, it
is possible to have three fixed points, one of them unstable and the other two stable;
see Fig. 4.7. The system is therefore bistable. If a positive current / > 0 is applied the
u-nullcline moves upward. Eventually the left stable fixed point and the saddle merge
and disappear via a (simple) saddle-node bifurcation. Since the right fixed point remains
stable, no oscillation occurs.
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Fig. 4.15 Reduced Hodgkin—Huxley model with nullclines and dynamics of a type II model. (a) For
weakly positive input, the u-nullcline (solid line) has three intersections with the w-nullcline (dashed
line). (b) Zoom onto the two left-most fixed points. A trajectory (thick solid line) is attracted toward
the left fixed point. (c) For input / > Iy, only one fixed point remains which is unstable. The trajectory
starting from the same initial condition as in A turns into a limit cycle. (d) Zoom onto the same region
as in (b). The limit cycle passes to the right of the region where the two fixed points have been in
(b). Arrows along the limit cycle indicate finite speed of the trajectory, so that the limit cycle has a
nonzero firing frequency.

4.4.3 Type II models and Hopf bifurcation

The typical jump from zero to a finite firing frequency, observed in the frequency—current
curve of type II models can arise by different bifurcation types. One important example is
a Hopf bifurcation.

Let us recall that the fixed points of the system lie at the intersection of the u-nullcline
with the w-nullcline. In the FitzHugh—Nagumo model, with parameters as in Fig. 4.10,
there is always a single fixed point whatever the (constant) driving current /. Nevertheless,
while 7 is slowly increased, the behavior of the system changes qualitatively from a stable
fixed point to a limit cycle; see Fig. 4.10. The transition occurs when the fixed point loses
its stability.

From the solution of the stability problem in Eq. (4.25) we know that the eigenval-
ues A,/ form a complex conjugate pair with a real part y and a imaginary part +/ — @
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Fig. 4.16 Hopf bifurcation. Top: Complex plane of eigenvalues. When the bifurcation parameter
increases, the real part of the complex eigenvalues A, /— = Y*iw passes at the bifurcation point from
a negative value (y < 0) to a positive one. Associated stable and unstable oscillatory solutions are
shown in left and right insets, respectively. Bottom: Amplitude a of oscillatory solutions as a function
of y. For y < 0 the fixed point (constant solution) is stable corresponding to an oscillation of zero
amplitude. At the bifurcation point, the constant solution loses its stability (dashed line) and a novel
oscillatory solution appears. The amplitude of the oscillatory solution increases continuously. For a
supercritical Hopf bifurcation the oscillatory solution is stable (solid line) whereas for a subcritical
Hopf bifurcation, it is unstable close to the bifurcation point. The linear bifurcation analysis is valid
only in the direct neighborhood of the bifurcation point (dashed box) and cannot predict the stable
limit cycle (solid line) of the subcritical Hopf bifurcation.

(Fig. 4.16). The fixed point is stable if v < 0. At the transition point, the real part vanishes
and the eigenvalues are

Ay = +i\/F,Gy— GuF,. 4.31)

These eigenvalues correspond to an oscillatory solution (of the linearized equation) with a
frequency given by @ = /F,G,, — G, F,. The above scenario of stability loss in combina-
tion with an emerging oscillation is called a Hopf bifurcation.

Unfortunately, the discussion so far does not tell us anything about the stability of the
oscillatory solution. If the new oscillatory solution, which appears at the Hopf bifurcation,
is itself unstable (which is more difficult to show), the scenario is called a subcritical Hopf
bifurcation (Fig. 4.16). This is the case in the FitzHugh—Nagumo model where, owing to
the instability of the oscillatory solution in the neighborhood of the Hopf bifurcation, the
system blows up and approaches another limit cycle of large amplitude; see Fig. 4.10.
The stable large-amplitude limit cycle solution exists, in fact, slightly before I reaches the



4.5 Threshold and excitability 103

critical value of the Hopf bifurcation. Thus there is a small regime of bistability between
the fixed point and the limit cycle.

In a supercritical Hopf bifurcation, on the other hand, the new periodic solution is stable.
In this case, the limit cycle would have a small amplitude if / is just above the bifurcation
point. The amplitude of the oscillation grows with the stimulation / (Fig. 4.16). Such peri-
odic oscillations of small amplitude are not linked to neuronal firing, but must rather be
interpreted as spontaneous subthreshold oscillations.

Whenever we have a Hopf bifurcation, be it subcritical or supercritical, the limit cycle
starts with finite frequency. Thus if we plot the frequency of the oscillation in the limit cycle
as a function of the (constant) input /, we find a discontinuity at the bifurcation point. How-
ever, only models with a subcritical Hopf bifurcation give rise to large-amplitude oscilla-
tions close to the bifurcation point. We conclude that models where the onset of oscillations
occurs via a subcritical Hopf bifurcation exhibit a gain function of type II.

Example: FitzHugh-Nagumo model

The appearance of oscillations in the FitzHugh—Nagumo Model discussed above in
Fig. 4.10 is of type IL. If the slope of the w-nullcline is larger than 1, there is only one
fixed point, whatever /. With increasing current /, the fixed point moves to the right.
Eventually it loses stability via a Hopf bifurcation.

4.5 Threshold and excitability

We have seen in Section 4.1 that the Hodgkin—Huxley model does not have a clear-cut fir-
ing threshold. Nevertheless, there is a critical regime where the sensitivity to input current
pulses is so high that it can be fairly well approximated by a threshold. For weak stimuli,
the voltage trace returns more or less directly to the resting potentials. For stronger stimuli
it makes a large detour, that is, the model emits a spike; see Fig. 4.1b. This property is
characteristic for a large class of systems collectively termed excitable systems.

For two-dimensional models, excitability can be discussed in phase space in a trans-
parent manner. We pose the following questions. What are the conditions for a thresh-
old behavior? If there is no sharp threshold, what are the conditions for a regime of high
(threshold-like) sensitivity? As we have seen in Section 4.1, the search for a threshold
yields different results for step or pulsatile currents. We shall see now that, for stimula-
tion with a short current pulse of variable amplitude, models with saddle-node bifurcation
(on or off a limit cycle) indeed have a threshold, whereas models where firing arises via a
Hopf bifurcation have not. On the other hand, even models with Hopf bifurcation can show
threshold-like behavior for current pulses if the dynamics of w are considerably slower than
that of u.

Throughout this section we use the following stimulation paradigm. We assume that
the neuron is at rest (or in a known state) and apply a short current pulse I(¢) = g ()
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Fig.4.17 Threshold in a type I model. (a) The stable manifold (thick dashed line) acts as a threshold.
Trajectories (thick solid lines) that start to the right of the stable manifold cannot return directly to
the stable fixed point (filled circle) but have to take a detour around the repulsive fixed point (circle at
(u,w) =~ (—1,0.2)). The result is a spike-like excursion of the u-variable. Thin lines are the nullclines.
(b) Blow-up of the rectangular region in (a). The starting points of the two sample trajectories are
marked by squares.

of amplitude g > 0. The input pulse influences the neuronal dynamics via Eq. (4.4). As a
consequence, the voltage u jumps at # = 0 by an amount Au = gR/7; see Eq. (4.4). With
T = RC the voltage jump can be written Au = ¢/C in agreement with the discussion in
Section 4.1.1.

Since the current pulse does not act directly on the recovery variable w (see Eq. (4.5)),
the time course of w(z) is continuous. In the phase plane, the current pulse therefore shifts
the value of state variables (u,w) of the system horizontally to a new value (u + Au,w).
How does the system return to equilibrium? How does the behavior depend on the ampli-
tude ¢ of the current pulse?

We will see that the behavior can depend on the charge g of the current pulse in two
qualitatively distinct ways. In type I models, the response to the input shows an “all-or-
nothing” behavior and consists of either a significant pulse (that is, an action potential) or
a simple decay back to rest. To this effect, type I models exhibit a threshold behavior. If the
action potential occurs, it has always roughly the same amplitude, but occurs at different
delays depending on the strength ¢ of the stimulating current pulse. In models with a Hopf
bifurcation, on the other hand, the amplitude of the response depends continuously on the
amplitude g. Therefore, models with a Hopf bifurcation do not have a sharp threshold.
Type II models with a saddle-node-off-limit-cycle bifurcation have a threshold behavior
for pulse injection similar to that of type I models.

Example: Single current pulses versus multiple pulses

The discussion so far has been focused on an isolated current pulse of charge g. Note,
however, that even in a model with threshold, a first input pulse that lifts the state of the
system above the threshold can be counterbalanced by a second negative input which
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Fig. 4.18 Type I model and delayed spike initiation. (a) Trajectories in the phase starting with initial
conditions (ug,wrest) Where ug = —20,—17,—14,—10 are close to the threshold. (b) Projection of
the trajectories on the voltage axis. Close to the threshold, spike initiation starts with a delay, but the
amplitude of the action potential is always roughly the same.

pulls the state of the system back. Thus, even in models with a threshold, the threshold
is only “seen” for the specific input scenario considered here, namely, one isolated short
current pulse.

4.5.1 Type I models

As discussed above, type I models are characterized by a set of three fixed points, a stable
one to the left, a saddle point in the middle, and an unstable one to the right. The linear
stability analysis at the saddle point reveals, by definition of a saddle, one positive and
one negative eigenvalue, A, and A_, respectively. The imaginary parts of the eigenvalues
vanish. Associated with A_ is the (real) eigenvector e_. A trajectory which approaches the
saddle in the direction of e_ from either side will eventually converge toward the fixed
point. There are two of these trajectories. The first one starts at infinity and approaches
the saddle from below. In the case of a type I mode, the second one starts at the unsta-
ble fixed point and approaches the saddle from above. The two together define the stable
manifold of the fixed point (Hale and Kogac, 1991). A perturbation around the fixed point
that lies on the stable manifold returns to the fixed point. All other perturbations will grow
exponentially.

The stable manifold plays an important role for the excitability of the system. Due to the
uniqueness of solutions of differential equations, trajectories cannot cross. This implies that
all trajectories with initial conditions to the right of the stable manifold must make a detour
around the unstable fixed point before they can reach the stable fixed point. Trajectories
with initial conditions to the left of the stable manifold return immediately toward the
stable fixed point; see Fig. 4.17.

Let us now apply these considerations to neuron models driven by a short current pulse.
At rest, the neuron model is at the stable fixed point. A short input current pulse moves the
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(@) (b)

Fig. 4.19 Type I model as a phase model. (a) For / > 0, the system is on a limit cycle. The phase
velocity d¢ /dt is positive everywhere. (b) For I < 0, the phase has a stable fixed point at ¢ = ¢ and
an unstable fixed point at ¢ = ¥.

state of the system to the right. If the current pulse is small, the new state of the system is
to the left of the stable manifold. Hence the membrane potential u decays back to rest. If
the current pulse is sufficiently strong, it will shift the state of the system to the right of
the stable manifold. Since the resting point is the only stable fixed point, the neuron model
will eventually return to the resting potential. To do so, it has, however, to take a large
detour which is seen as a pulse in the voltage variable u. The stable manifold thus acts as a
threshold for spike initiation, if the neuron model is probed with an isolated current pulse.

Example: Delayed spike initiation

We consider a sequence of current pulse of variable amplitude that cause a jump to
initial values (up,wrest) Where uy is close to the firing threshold identified above. As u
approaches the firing threshold from above, action potentials are elicited with increasing
delay; see Fig. 4.18b. The reason is that close to the firing threshold (i.e., the stable
manifold of the saddle point) the trajectory is attracted toward the saddle point without
reaching it. At the saddle point, the velocity of the trajectory would be zero. Close to the
saddle point the velocity of the trajectory is nonzero, but extremely slow. The rapid rise
of the action potential only starts after the trajectory has gained a minimal distance from
the saddle point.

Example: Canonical type I model

We have seen in the previous example that, for various current amplitudes, the tra-
jectory always takes nearly the same path on its detour in the two-dimensional phase
plane. Let us therefore simplify further and just describe the position or “phase” on this
standard path.
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Fig. 420 Threshold behavior in a model with Hopf bifurcation. (a) Trajectories in the phase starting
with initial conditions (uq, wrest) Where ug = —0.5,—0.25,—0.125,0,0.25. (b) Projection of the tra-
jectories on the voltage axis. For ug < —0.25, the trajectories return rapidly to rest. The trajectories
with uy > —0.125 start with positive slope. Parameters were by =2, by = 1.5, € = 0.1 with / = 0.

Consider the one-dimensional model
do
5=

where g > 0 is a parameter and [ is the applied current, with 0 < |I| < g. The variable ¢
is the phase along the limit cycle trajectory. Formally, a spike is said to occur whenever
O =m.

For I < 0 on the right-hand side of Eq. (4.32), the phase equation d¢ /dt has two fixed
points. The resting state is at the stable fixed point ¢ = ¢,. The unstable fixed point at
¢ = U acts as a threshold; see Fig. 4.19b. Let us now assume initial conditions slightly
above threshold, namely, ¢o = ¥ 4 8¢. Since d¢ /dt|y, > O the system starts to fire an
action potential but for §¢ < 1 the phase velocity is still close to zero and the maximum
of the spike (corresponding to ¢ = 7) is reached only after a long delay. This delay
depends critically on the initial condition.

For all currents I > 0, we have d¢ /d¢ > 0, so that the system is circling along the limit
cycle; see Fig. 4.19a. The minimal velocity is d¢ /dt = I for ¢ = 0. The period of the limit
cycle can be found by integration of (4.32) around a full cycle. Let us now reduce the
amplitude of the applied current /. For I — 0, the velocity along the trajectory around
¢ = 0 tends to zero. The period of one cycle T'(I) therefore tends to infinity. In other
words, for I — 0, the frequency of the oscillation v = 1/T (I) decreases (continuously)
to zero, the characteristic feature of type I models.

The model (4.32) is a canonical model in the sense that all type I neuron models close
to the point of a saddle-node-on-limit-cycle bifurcation can be mapped onto Eq. (4.32)
(Ermentrout, 1996).

q(1—cos¢)+I(1+cosp) (4.32)

4.5.2 Hopf bifurcations

In contrast to models with saddle-node bifurcation, a neuron model with a Hopf bifurcation
does not have a stable manifold and, hence, there is no “forbidden line” that acts as a
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sharp threshold. Instead of the typical all-or-nothing behavior of type I models there is a
continuum of trajectories; see Fig. 4.20a.

Nevertheless, if the time scale of the u-dynamics is much faster than that of the
w-dynamics, then there is a critical regime where the sensitivity to the amplitude of the
input current pulse can be extremely high. If the amplitude of the input pulse is increased by
a tiny amount, the amplitude of the response increases a lot. In practice, the consequences
of the regime of high sensitivity are similar to that of a sharp threshold. There is, however,
a subtle difference in the timing of the response between type I models with saddle-node-
onto-limit-cycle bifurcation and type Il models with Hopf bifurcation. In models with Hopf
bifurcation, the peak of the response is always reached with roughly the same delay, inde-
pendently of the size of the input pulse. It is the amplitude of the response that increases
rapidly but continuously; see Fig. 4.20b.

This is to be contrasted with the behavior of models with a saddle-node-onto-limit cycle
behavior. As discussed above, the amplitude of the response of type I models is rather
stereotyped: either there is an action potential or not. For input currents which are just
above threshold, the action potential occurs, however, with an extremely long delay.

4.6 Separation of time scales and reduction to one dimension

Consider the generic two-dimensional neuron model given by Eqgs. (4.4) and (4.5). We
measure time in units of 7 and take R = 1. Equations (4.4) and (4.5) are then

)+, (4.33)
dr
dw
bl 434
& eG(u,w), (4.34)

where € = 17/1,,. If T,, > 7, then € < 1. In this situation the time scale that governs the evo-
lution of u is much faster than that of w. This observation can be exploited for the analysis
of the system. The general idea is that of a “separation of time scales;” in the mathematical
literature the limit of € — 0 is called “singular perturbation.” Oscillatory behavior for small
€ is called a “relaxation oscillation.”

What are the consequences of the large difference of time scales for the phase portrait
of the system? Recall that the flow is in the direction of (i,%). In the limit of € — 0,
all arrows in the flow field are therefore horizontal, except those in the neighborhood of
the u-nullcline. On the u-nullcline, # = 0 and arrows are vertical as usual. Their length,
however, is only of order €. Intuitively speaking, the horizontal arrows rapidly push the
trajectory toward the u-nullcline. Only close to the u-nullcline are directions of movement
other than horizontal possible. Therefore, trajectories slowly follow the u-nullcline, except
at the knees of the nullcline where they jump to a different branch.

Excitability can now be discussed with the help of Fig. 4.21. A current pulse shifts the
state of the system horizontally away from the stable fixed point. If the current pulse is
small, the system returns immediately (i.e., on the fast time scale) to the stable fixed point.
If the current pulse is large enough so as to put the system beyond the middle branch of
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w

Fig. 4.21 Excitability in a type II model with separated time scales. The u-dynamics are much
faster than the w-dynamics. The flux is therefore close to horizontal, except in the neighborhood
of the u-nullcline (schematic figure). Initial conditions (circle) to the left of the middle branch of the
u-nullcline return directly to the stable fixed point; a trajectory starting to the right of the middle
branch develops a voltage pulse.

the u-nullcline, then the trajectory is pushed toward the right branch of the u nullcline.
The trajectory follows the u-nullcline slowly upward until it jumps back (on the fast time
scale) to the left branch of the u-nullcline. The “jump” between the branches of the null-
cline corresponds to a rapid voltage change. In terms of neuronal modeling, the jump from
the right to the left branch corresponds to the downstroke of the action potential. The mid-
dle branch of the u-nullcline (where # > 0) acts as a threshold for spike initiation; see
Fig. 4.22.

If we are not interested in the shape of an action potential, but only in the process of
spike initiation, we can exploit the separation of time scales for a further reduction of the
two-dimensional system of equations to a single variable. Without input, the neuron is at
rest with variables (uest, Wrest)” . An input current I(¢) acts on the voltage dynamics, but
has no direct influence on the variable w. Moreover, in the limit of € < 1, the influence of
the voltage u on the w-variable via Eq. (4.34) is negligible. Hence, we can set w = Wy
and summarize the voltage dynamics of spike initiation by a singe equation

du
E = F(M,Wrest) +I (435)
Equation (4.35) is the basis of the nonlinear integrate-and-fire models that we will discuss

in Chapter 5.

In a two-dimensional neuron model with separation of time scales, the upswing of the
spike corresponds to a rapid horizontal movement of the trajectory in the phase plane. The
upswing is therefore correctly reproduced by Eq. (4.35). The recovery variable departs
from its resting value wyeg only during the return of the system to rest, after the voltage has
(nearly) reached its maximum (Fig. 4.22a). In the one-dimensional system, the downswing
of the action potential is replaced by a simple reset of the voltage variable, as we shall see
in the next chapter.
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Fig. 4.22 FitzHugh-Nagumo model with separated time scales. All parameters are identical to those
of Fig. 4.20 except for € in Eq. (4.34) which has been reduced by a factor of 10. (a) A trajectory
which starts to the left-hand side of the middle branch of the u-nullcline returns directly to the rest
state; all other trajectories develop a pulse. (b) Owing to slow w-dynamics, pulses are much broader
than in Fig. 4.20.

Example: Piecewise linear nullclines

Let us study the piecewise linear model shown in Fig. 4.23,

d

diltl = f(u)—w+I, (4.36)

d

= =e(bu—w), (4.37)
with f(u) = au for u < 0.5, f(u) =a (1l —u) for 0.5 < u < 1.5 and f(u) = co + ¢ u for
u > 1.5 where a,c; < 0 are parameters and co = —0.5a — 1.5¢;. Furthermore, b > 0 and

0<ex .

The rest state is at u = w = 0. Suppose that the system is stimulated by a short current
pulse that shifts the state of the system horizontally. As long as u < 1, we have f(u) < 0.
According to (4.36), u < 0 and u returns to the rest state. For u < 0.5 the relaxation to
rest is exponential with u(r) = exp(ar) in the limit of € — 0. Thus, the return to rest after
a small perturbation is governed by the fast time scale.

If the current pulse moves u to a value larger than unity, we have & = f(u) > 0. Hence
the voltage u increases and a pulse is emitted. That is to say, u = 1 acts as a threshold.
Hence, under the assumption of a strict separation of time scales, this neuron model does
have a threshold when stimulated with pulse input. The threshold sits on the horizontal
axis w = 0 at the point where # = 0.

Let us now suppose that the neuron receives a weak and constant background current
during our threshold-search experiments. A constant current shifts the u-nullcline ver-
tically upward. Hence the point where # = O shifts leftward and therefore the voltage
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Fig. 4.23 Piecewise linear model with separation of
time scale. The inset shows the trajectory (arrows)
which follows the u-nullcline at a distance of order
€ where € < 1 is the ratio of the time scale of the
u-dynamics and that of the w-dynamics in unit-free
coordinates; see Eq. (4.37).

threshold for pulse stimulation sits now at a lower value. Again, we conclude that the
threshold value we find depends on the stimulation protocol.

4.7 Summary

The four-dimensional model of Hodgkin—Huxley can be reduced to two dimensions under
the assumption that the m-dynamics are fast compared with u, k, and n, and that the latter
two evolve on the same time scale. Two-dimensional models can readily be visualized and
studied in the phase plane.

As a first application of phase plane analysis, we asked whether neuron models have a
firing threshold — and found that the answer is something like “No, but ... .” The answer
is “No,” because the threshold value depends on the stimulation paradigm. The voltage
threshold derived with short current pulses is different from that found with constant cur-
rent or slow ramps. In type II models the onset of repetitive firing at the rheobase cur-
rent value starts with nonzero frequency. Type I models exhibit onset of repetitive firing
with zero frequency. The transition to repetitive firing in type I models arises through a
saddle-node-onto-limit-cycle bifurcation whereas several bifurcation types can give rise to
a type II behavior.

The methods of phase plane analysis and dimension reduction are generic tools and
will also play a role in several chapters of Parts II and IV of this book. In particular, the
separation of time scales between the fast voltage variable and the slow recovery variable
enables a further reduction of neuronal dynamics to a one-dimensional nonlinear integrate-
and-fire model, a fact which we will exploit in the next chapter.
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the FitzHugh—Nagumo model. Phase plane methods applied to neuronal dynamics are dis-
cussed in the clearly written review paper of Rinzel and Ermentrout (1998) and in the book
by Izhikevich (2007b).

The classification of neuron models as type I and type II can be found in Rinzel and
Ermentrout (1998) and in Ermentrout (1996), and systematically in Izhikevich (2007b).
The steps of dimensionality reduction are presented in Kepler ef al. (1992).

Exercises

1. Inhibitory rebound.
(a) Draw on the phase plane a schematic representation of the nullclines and flow for the piece-
wise linear FitzHugh—-Nagumo (Eqs. (4.36) and (4.37)) with parameters a =cy = —1 and b =2,
and mark the stable fixed point.
(b) A hyperpolarizing current is introduced very slowly and increased up to a maximal value of
I = —2. Calculate the new value of the stable fixed point. Draw the nullclines and flow for [ = —2
on a different phase plane.
(c) The hyperpolarizing current is suddenly removed. Use the phase planes in (a) and (b) to
find out what will happen. Draw schematically the evolution of the neurons state as a membrane
potential time-series and as a trajectory in the phase plane. Use € = 0.1.

Hint: The resting state from b is the initial value of the trajectory in c.

2. Separation of time scales and quasi-stationary assumption.

(a) Consider the following differential equation:

dx

T—=—x+c 4.38
ar ; (4.38)

where c is a constant. Find the fixed point of this equation. Determine the stability of the fixed

point and the solution for any initial condition.

(b) Suppose that c is now piecewise constant:

0 fort<0
c=c(t)=< ¢ for0<r<1 (4.39)
0 forr>1.
Calculate the solution x(t) for the initial condition x(t = —10) = 0.
(c) Now consider the linear system:
du
E = f(u) —m,
(4.40)
€ dm _ m+c(u)
dr '

Exploit the fact that € << 1 to reduce the system to one equation. Note the similarity with the
equations in (a) and (b).

3. Separation of time scale and relaxation oscillators.
(a) Show that in the piecewise linear neuron model defined in Eqs. (4.36) and (4.37) the trajectory
evolves parallel to the right branch of the u-nullcline, shifted upward by a distance of order €
(Fig. 4.23) or parallel to the lifted branch of the u-nullcline, shifted downward by a distance of
order €.

Hint: If the u-nullcline is given by the function f(u), set w(t) = flu(t)] + ex(t) where x(t) is
the momentary distance and study the evolution of du/dt and dw/dt according to the differential

equations of u and w. At the same time, under the assumption of parallel movement, x(t) is
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a constant and the geometry of the problem in the two-dimensional phase space tells us that
dw/dr = (df /du) (du/dt). Show that this leads to a consistent solution for the distance x.
(b) What is the time course of the voltage u(t) while the trajectory follows the branch?
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In Part IT we exploit the mathematical and biophysical foundations that were laid in Part I in
order to reduce the complexity of neuron models. Part II is focused on simplified
phenomenological models in which spikes are generated by a threshold criterion, possi-
bly in combination with a stochastic process. We start in Chapter 5 with a determinstic
one-dimensional integrate-and-fire model. It turns out that such a model is not powerful
enough to account for firing properties of real neurons so that we add adaptation variables
(Chapter 6) and stochasticity (Chapters 7-9). These simplified neuron models, often called
generalized integrate-and-fire models or generalized linear models, can be systematically
fitted to experimental data (Chapter 10). Moreover they allow a transparent discussion of
neuronal encoding in (and decoding of) stochastic spike trains (Chapter 11). The simpli-
fied neuron models of Part II will be the starting point of the analysis of large neuronal
networks in Part III.
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Nonlinear integrate-and-fire models

Detailed conductance-based neuron models can reproduce electrophysiological measure-
ments to a high degree of accuracy, but because of their intrinsic complexity these models
are difficult to analyze. For this reason, simple phenomenological spiking neuron models
are highly popular for studies of neural coding, memory, and network dynamics. In this
chapter we discuss formal threshold models of neuronal firing, also called integrate-and-
fire models.

The shape of the action potential of a given neuron is rather stereotyped with very little
change between one spike and the next. Thus, the shape of the action potential which
travels along the axon to a postsynaptic neuron cannot be used to transmit information;
rather, from the point of view of the receiving neuron, action potentials are “events” which
are fully characterized by the arrival time of the spike at the synapse. Note that spikes
from different neuron types can have different shapes and the duration and shape of the
spike does influence neurotransmitter release; but the spikes that arrive at a given synapse
all come from the same presynaptic neuron and — if we neglect effects of fatigue of ionic
channels in the axon — we can assume that its time course is always the same. Therefore we
make no effort to model the exact shape of an action potential. Rather, spikes are treated as
events characterized by their firing time — and the task consists in finding a model so as to
reliably predict spike timings.

In generalized integrate-and-fire models, spikes are generated whenever the membrane
potential u crosses some threshold Opeser from below. The moment of threshold crossing
defines the firing time ¢/,

du(t
t: u(tf ) = Breset  and l:i(t)

> 0. 5.1
1=t/
In contrast to the two-dimensional neuron models, encountered in Chapter 4, we don’t
have a relaxation variable that enables us to describe the return of the membrane potential
to rest. In the integrate-and-fire models, discussed in this and the following chapters, the
downswing of the action potential is replaced by an algorithmic reset of the membrane
potential to a new value u, each time the threshold Ose is reached. The duration of an
action potential is sometimes, but not always, replaced by a dead-time A®* after each
spike, before the voltage dynamics restarts with u = u, as initial condition.
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In this chapter, we focus on integrate-and-fire models with a single variable u which
describes the time course of the membrane potential. In Chapter 6, we extend the models
developed in this chapter so as to include adaptation of neuronal firing during extended
strong stimulation. In Chapters 7-11 we consider questions of coding, noise, and relia-
bility of spike-time prediction — using the generalized integrate-and-fire model which we
introduce now.

5.1 Thresholds in a nonlinear integrate-and-fire model

In a general nonlinear integrate-and-fire model with a single variable u, the membrane
potential evolves according to

T%u:f(u)—i-R(u)I. (5.2)

As mentioned above, the dynamics is stopped if u reaches the threshold O;ese. In this case
the firing time #/ is noted and integration of the membrane potential equation restarts at
time ¢/ + A% with initial condition u,. A typical example of the function f(u) in Eq. (5.2) is
shown in Fig. 5.1. If not specified otherwise, we always assume in the following a constant
input resistance R(u) = R independent of voltage.
A comparison of Eq. (5.2) with the equation of the standard leaky integrate-and-fire
model
d
T—u=—(u—trest) + RI, (5.3)
dr
which we encountered in Chapter 1, shows that the nonlinear function R(«) can be inter-
preted as a voltage-dependent input resistance while f(u) replaces the leak term —(u —
Urest ). Some well-known examples of nonlinear integrate-and-fire models include the expo-
nential integrate-and-fire model (Section 5.2) and the quadratic integrate-and-fire model
(Section 5.3). Before we turn to these specific models, we discuss some general aspects of
nonlinear integrate-and-fire models.

Example: Rescaling and standard forms (¥)

It is always possible to rescale the variables in Eq. (5.2) so that the threshold and
membrane time constant are equal to unity and the resting potential vanishes. Further-
more, there is no need to interpret the variable u as the membrane potential. For example,
starting from the nonlinear integrate-and-fire model Eq. (5.2), we can introduce a new
variable # by the transformation

u(t)
u(t) —s i(t) = 7 /O %, (5.4)

which is possible if R(x) # 0 for all x in the integration range. In terms of i we have a
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dt

Iy>0

ﬁrh

Urest 9

u
rest v reset

Fig. 5.1 Thresholds in a nonlinear integrate-and-fire model. The change du/dt of the voltage is
plotted as a function f(u) of the voltage u. (a) In the absence of stimulation [y = 0, the zero-crossings
du/dr = 0 define the resting potential ures; and the firing threshold ¥ of the nonlinear integrate-and-
fire model. A positive change in the membrane potential du/dr = f(u) > 0 implies that the voltage
increases (flow arrow to the right), while du/dr < 0 implies a decay of the voltage. The pattern of
arrows indicates a stable fixed point at rest, but an unstable fixed point at ©}. Whenever the voltage
reaches the value Ocser the voltage is reset to a lower value. (b) For a constant positive input [y > 0,
the curve of du/dr is shifted vertically upward. The rheobase threshold ¥y, indicates the maximal
voltage that can be reached with constant current injection before the neuron starts repetitive firing.

new nonlinear integrate-and-fire model of the form
di
i
with d(i) = f(u)/R(u). In other words, a general integrate-and-fire model (5.2) can
always be reduced to the standard form (5.5). By a completely analogous transformation,
we could eliminate the voltage-dependence of the function f in Eq. (5.2) and move all
the dependence into a new voltage-dependent R(u) (Abbott and van Vreeswijk, 1993).

d(a)+1(r) (5.5)

5.1.1 Where is the firing threshold?

In the standard leaky integrate-and-fire model, the linear equation Eq. (5.3) is combined
with a numerical threshold Oycse. We may interpret g as the firing threshold in the sense
of the minimal voltage necessary to cause a spike, whatever stimulus we choose. In other
words, if the voltage is currently marginally below Oyese¢ and no further stimulus is applied,
the neuron inevitably returns to rest. If the voltage reaches Oeset, the neuron fires. For
nonlinear integrate-and-fire models, such a clear-cut picture of a firing threshold no longer
holds.

The typical shape of a function f(u) used in the nonlinear integrate-and-fire model
defined in Eq. (5.2) is sketched in Fig. 5.1. Around the resting potential, the function f is
linear and proportional to (# — ures). But in contrast to the leaky integrate-and-fire model
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Fig. 5.2 Stimulation of a nonlinear integrate-and-fire model with pulses and step currents. Voltage
as a function of time (top) in response to the currents indicated at the bottom. The firing threshold ¥
found with pulse stimuli and the threshold ¥, for repetitive firing under prolonged current injection
are indicated by the dashed horizontal lines.

of Eq. (5.3) where the voltage dependence is linear everywhere, the function f(u) of the
nonlinear model turns at some point sharply upwards.

If the nonlinear integrate-and-fire model is stimulated with currents of various shapes,
we can identify, from the simulation of the model, the threshold for spike generation. We
search for the maximal voltage which can be reached before the model fires a spike. Fig-
ure 5.2 shows that the voltage threshold ¥+ determined with pulse-like input currents is
different from the voltage threshold determined with prolonged step currents.

For an explanation, we return to Fig. 5.1a which shows du/dt as a function of u. There
are two zero-crossings du/dt = f(u) = 0, which we denote as ures and ¥, respectively. The
first one, U, 1S a stable fixed point of the dynamics, whereas 1 is an unstable one.

A short current pulse () = g (¢ — ) injected into Eq. (5.2) delivers at time 7y a total
charge g and causes a voltage step of size Au = Rgq/7 (see Section 1.3.2). The new voltage
U = Urest + Au serves as initial condition for the integration of the differential equation after
the input pulse. For u < % the membrane potential returns to the resting potential, while
for u > ¥ the membrane potential increases further, until the increase is stopped at the
numerical threshold 6. Thus the unstable fixed point ¢} serves as a voltage threshold, if
the neuron model is stimulated by a short current pulse.

Under the application of a constant current, the picture is different (Fig. 5.1b). Since we
plot du/dr along the vertical axis, a constant current Iy shifts the curve of du/d¢t shown
in Fig. 5.1a vertically upward to a new value f(u) 4+ Rly; see Eq. (5.2). If the current is
sufficiently large, both fixed points disappear so that du/dz is always positive. As a result,
the voltage increases until it hits the numerical threshold Oyese, at which point it is reset
and the same picture repeats. In other words, the neuron model has entered the regime of
repetitive firing.
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The critical current for initiation of repetitive firing corresponds to the voltage where
the stable fixed point disappears, or ¥, = I R. In the experimental literature, the critical
current I, = ¥, /R is called the “rheobase” current. In the mathematical literature, it is
called the bifurcation point. Note that a stationary voltage u > ¥y, is not possible. On the
other hand, for pulse inputs or time-dependent currents, voltage transients into the regime
O < u(t) < ¥ routinely occur without initiating a spike.

5.1.2 Detour: Analysis of one-dimensional differential equations

For those readers who are not familiar with figures such as Fig. 5.1, we add a few mathe-
matical details.

The momentary state of one-dimensional differential equations such as Eq. (5.2) is com-
pletely described by a single variable, called u in our case. This variable is plotted in
Fig. 5.1 along the horizontal axis. An increase in voltage corresponds to a movement to
the right, a decrease to a movement to the left. Thus, in contrast to the phase plane analysis
of two-dimensional neuron models, encountered in Section 4.3, the momentary state of the
system always lies on the horizontal axis.

Let us suppose that the momentary value of the voltage is u(#). The value a short time
afterwards is given by u(fy + At) = u(to) + 1 At where i = du/dt is given by the differential
equation Eq. (5.2). The difference u(to + Ar) — u(to) is positive if & > 0 and indicated by a
flow arrow to the right; the arrow points leftwards if & < 0.

A nice aspect of a plot such as in Fig. 5.1a is that, for each u, the vertical axis of the
plot indicates i = f(u), i.e., we can directly read off the value of the flow without further
calculation. If the value of the function f(u) is above zero, the flow is to the right; if it is
negative, the flow is to the left.

By definition, the flow du/dr vanishes at the fixed points. Thus fixed points are given by
the zero-crossings f(u) = 0 of the curve. Moreover, the flow pattern directly indicates the
stability of a fixed point. From the figure, we can read off that a fixed point at i is stable
(arrows pointing towards the fixed point) if the slope of the curve df/du evaluated at ug is
negative.

The mathematical proof goes as follows. Suppose that the system is, at time 7y, slightly
perturbed around the fixed point to a new value ug + x(fp). We focus on the evolution of the
perturbation x(¢). The perturbation follows the differential equation dx/dr = 1 = f(up +x).
Taylor expansion of f around ug gives dx/dr = f(ug) + (df/du),,x. At the fixed point,
f(uo) = 0. The solution of the differential equation therefore is x(¢) = x(tp) exp[b (t — 19)]-
If the slope b = (df/du),, is negative, the amplitude of the perturbation x(¢) decays back
to zero, indicating stability. Therefore, negative slope (df/du),, < 0 implies stability of
the fixed point.

upy
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5.2 Exponential integrate-and-fire model

In the exponential integrate-and-fire model (Fourcaud-Trocme et al., 2003), the differential
equation for the membrane potential is given by

-
T—u = — (U — Urest) + AT €Xp U—Oh +RI. (5.6)
dr Ar

The first term on the right-hand side of Eq. (5.6) is identical to Eq. (5.3) and describes the
leak of a passive membrane. The second term is an exponential nonlinearity with “sharp-
ness” parameter Ay and “threshold” ¥y.

The moment when the membrane potential reaches the numerical threshold B¢ defines
the firing time #/. After firing, the membrane potential is reset to u, and integration restarts
at time ¢/ 4 A% where A® is an absolute refractory time, typically chosen in the range
0 < A% < 5mg. If the numerical threshold is chosen sufficiently high, Oeset > ¥ + Ay, its
exact value does not play any role. The reason is that the upswing of the action potential
for u > ¥ + Ar is so rapid that it goes to infinity in an incredibly short time (Touboul,
2009). The threshold By is introduced mainly for numerical convenience. For a formal
mathematical analysis of the model, the threshold can be pushed to infinity.

Example: Rheobase threshold and interpretation of parameters

The exponential integrate-and-fire model is a special case of the general nonlinear
model defined in Eq. (5.2) with a function

f(u) = —(u— rest) + Ar exp (u Aﬁrh> : (5.7)

T

In the absence of external input (/ = 0), the differential equation of the exponential
integrate-and-fire model (5.6) has two fixed points, defined by the zero-crossings f(u) =
0; see Fig. 5.1a. We suppose that parameters are chosen such that ¥y, > urest +A7. Then
the stable fixed point is at u = u,s¢ because the exponential term becomes negligibly
small for u < ¥y, — Ar. The unstable fixed point which acts as a threshold for pulse
input lies to the right-hand side of ¥y,.

If the external input increases slowly in a quasi-constant fashion, the two fixed points
move closer together until they finally merge at the bifurcation point; see Fig. 5.1b. The
voltage at the bifurcation point can be determined from the condition d f /du = 0 to lie at
u = V. Thus Yy, is the threshold found with constant (rheobase) current, which justifies
its name.

Example: Relation to the leaky integrate-and-fire model
In the exponential integrate-and-fire model, the voltage threshold ¥ for pulse input is

different from the rheobase threshold 9, for constant input (Fig. 5.1). However, in the
limit A7 — 0, the sharpness of the exponential term increases and ¥ approaches ¥y
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Fig. 5.3 Exponential and leaky integrate-and-fire model. The function f(u) is plotted for different
choices of the “sharpness” of the threshold (A7 = 1, 0.5, 0.25, 0.05 mV). In the limit Ay — 0 the
exponential integrate-and-fire model becomes equivalent to a leaky integrate-and-fire model (dashed
line). The inset shows a zoom onto the threshold region (dotted box).

(Fig. 5.3). In the limit, A7 — 0, we can approximate the nonlinear function by the linear
term

fu) = —(u—tret) foru < Oy (5.8)

and the model fires whenever u reaches ¥, = ¥. Thus, in the limit Az — 0, we return
to the leaky integrate-and-fire model.

5.2.1 Extracting the nonlinearity from data

Why should we choose an exponential nonlinearity rather than any other nonlinear depen-
dence in the function f(u) of the general nonlinear integrate-and-fire model? Can we use
experimental data to determine the “correct” shape of f(u«) in Eq. (5.2)?

We can rewrite the differential equation (5.2) of the nonlinear integrate-and-fire model
by moving the function f(u) to the left-hand side and all other terms to the right-hand-side
of the equation. After rescaling with the time constant 7, the nonlinearity f(u) = f(u)/7 is

fu(t)) = Z1(t) = —ult), (5.9)

where C = 7/R can be interpreted as the capacity of the membrane.

In order to determine the function f(u), an experimenter injects a time-dependent current
I(¢) into the soma of a neuron while measuring with a second electrode the voltage u(t).
From the voltage time course, one finds the voltage derivative du/dz.

A measurement at time ¢ yields a value u(¢) (which we use as value along the x-axis of
aplot) and a value [(I(¢)/C) — (du/dr)] (which we plot along the y-axis). With a thousand
or more time points per second, the plot fills up rapidly. For each voltage u there are many
data points with different values along the y-axis. The best choice of the parameter C is the
one that minimizes the width of this distribution. At the end, we average across all points
at a given voltage u to find the empirical function (Badel et al., 2008a)

) = (10~ ), .10
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Fig. 5.4 Extracting nonlinear integrate-and-fire models from data. The function f(u) characterizing
the nonlinearity of an integrate-and-fire model according to Eq. (5.2) is derived from experimental
data using random current injection into neurons. (a) Cortical pyramidal cells. Experimental data
points (symbols) and fit by an exponential integrate-and-fire model. (b) As in (a), but for an inhibitory
interneuron. Data courtesy of Laurent Badel and Sandrine Lefort (Badel et al., 2008a).

where the angle brackets indicate averaging. This function is plotted in Fig. 5.4. We find
that the empirical function extracted from experiments is well approximated by a combi-
nation of a linear and exponential term

~ —Urest A -
f(u):_l/t Mrest+;"exp<MA rh)) (511)

T T

which provides an empirical justification of the choice of nonlinearity in the exponential
integrate-and-fire model.

We note that the slope of the curve at the resting potential is related to the membrane
time constant T while the threshold parameter ¥, is the voltage at which the function f
goes through its minimum.

Example: Refractory exponential integrate-and-fire model

The above procedure for determining the nonlinearity can be repeated for a set of
data points restricted to a few milliseconds after an action potential (Fig. 5.6). After a
spike, the threshold ¥y, is slightly higher, which is one of the signs of refractoriness.
Moreover, the location of the zero-crossing ur.s¢ and the slope of the function f at Upegt
are different, which is to be expected since after a spike the sodium channel is inacti-
vated while several other ion channels are open. All parameters return to the “normal”
values within a few tens of milliseconds. An exponential integrate-and-fire model where
the parameters depend on the time since the last spike has been called the “refractory
exponential integrate-and-fire model” (Badel et al., 2008a). The refractory exponential
integrate-and-fire model predicts the voltage time course of a real neuron for novel time-
dependent stimuli to a high degree of accuracy, if the input statistics is similar to the one
used for parameter extraction (Fig. 5.5).
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Fig. 5.5 Predicting the membrane voltage with an exponential integrate-and-fire model. (a) Com-
parison of membrane voltage in experiments (thick line) with the predictions of the exponential
integrate-and-fire model (thin line). The fit is excellent, except during a short period after a spike. (b)
Same as in (a), but in a model with refractoriness. Modified from Badel ez al. (2008b).
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Fig. 5.6 Refractory effects in the exponential integrate-and-fire model. Top: Because of refractori-
ness immediately after a spike, the exponential integrate-and-fire model has a higher firing threshold
and increased slope in the linear section. Data points and fit as in Fig. 5.4, but data points restricted
to intervals 5—10 ms (far left), 10-20 ms (left), 20-30 ms (right), or 30-50 ms (far right) after a spike.
As the time since the last spike increases, refractoriness decays and the parameters of the exponen-
tial integrate-and-fire model approach their standard values (dashed lines). Bottom: Sample voltage
traces during and after a spike. From Badel et al. (2008b).

5.2.2 From Hodgkin—Huxley to exponential integrate-and-fire

In Section 4.2 we have already seen that the four-dimensional system of equations of
Hodgkin and Huxley can be reduced to two equations. Here we show how to take a further
step so as to arrive at a single nonlinear differential equation combined with a reset (Jolivet
et al., 2004).

After appropriate rescaling of all variables, the system of two equations that summarizes
a Hodgkin—-Huxley model reduced to two dimensions can be written as

d
d%’ = Fu,w)+1, (5.12)
d

= = eGuw), (5.13)

which is just a copy of Egs. (4.33) and (4.34) in Section 4.6; note that time is measured
in units of the membrane time constant 7,, and that the resistance has been absorbed into
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the definition of the currrent /. The function F(u,w) is given by Egs. (4.3) and (4.4). The
exact shape of the function G(u,w) has been derived in Section 4.2, but plays no role in the
following. We recall that the fixed points are defined by the condition du/df = dw/dr = 0.
For the case without stimulation / = 0, we denote the variables at the stable fixed point as
Urest (resting potential) and wyeg (resting value of the second variable).

In the following we assume that there is a separation of time scales (¢ < 1) so that the
evolution of the variable w is much slower than that of the voltage. As discussed in Sec-
tion 4.6, this implies that all flow arrows in the two-dimensional phase plane are horizontal
except those in the neighborhood of the u-nullcline. In particular, after a stimulation with
short current pulses, the trajectories move horizontally back to the resting state (no spike
elicited) or horizontally leftward (upswing of an action potential) until they hit one of the
branches of the u-nullcline; see Fig. 4.22. In other words, the second variable stays at its
resting value w = wy.t and can therefore be eliminated — unless we want to describe the
exact shape of the action potential. As long as we are only interested in the initiation phase
of the action potential we can assume a fixed value w = Wreg.

For constant w, Eq. (5.12) becomes

%:F(u,wrest)—i-lzf(u)—i—l, (5.14)
which has the form of a nonlinear integrate-and-fire neuron. The resulting function f(u) is
plotted in Fig. 5.7a. It has three zero-crossings: the first one (left) at u,e, corresponding to
a stable fixed point; a second one (middle) which acts as a threshold ¥; and a third one to
the right, which is again a stable fixed point and limits the upswing of the action potential.
The value of the reset threshold B > ¥ should be reached during the upswing of the
spike and must therefore be chosen between the second and third fixed point. While in the
two-dimensional model the variable w is necessary to describe the downswing of the action
potential on a smooth trajectory back to rest, we replace the downswing in the nonlinear
integrate-and-fire model by an artificial reset of the voltage variable to a value u, whenever
u hits Beget.

If we focus on the region u < Oreset, the function f(u) = F (u, wres) is very well approx-
imated by the nonlinearity of the exponential integrate-and-fire model (Fig. 5.7b).

Example: Exponential activation of sodium channels

In the previous section, we followed a series of formal mathematical steps, from
the two-dimensional version of the Hodgkin—Huxley model to a one-dimensional
differential equation which looked like a combination of linear and exponential terms,
i.e., an exponential integrate-and-fire model. For a more biophysical derivation and
interpretation of the exponential integrate-and-fire model, it is, however, illustrative
to start directly with the voltage equation of the Hodgkin—Huxley model, (2.4)—(2.5),
and replace the variables 4 and n by their values at rest, Ares and 7, respectively.
Furthermore, we assume that m approaches instantaneously its equilibrium value mg(u).
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Fig. 5.7 Approximating Hodgkin—Huxley by an exponential integrate-and-fire model. (a) The value
of the F(u,wrest) for fixed value of the second variable w = wyeg is plotted as a function of the
voltage variable u. The choice of a reset threshold O is indicated. (b) Solid line as in A, restricted
to u# < Oreser- The dashed line shows the approximation by an exponential integrate-and-fire model.

This yields
du

Ca = _gNa[mO(u)]3 Prest (u - ENa) — 8K (nrest>4 (u - EK) — 8L (u - EL) +1. (5.15)

Potassium and leak currents can now be summed up to a new effective leak term
g (u — E°T). In the voltage range close to the resting potential the driving force
(u— Ena) of the sodium current can be well approximated by (urest — ENa)- Then the only
remaining nonlinearity on the right-hand side of Eq. (5.15) arises from mi(u). For volt-
ages around rest, mg(u) has, however, an exponential shape. In summary, the right-hand
side of Eq. (5.15) can be approximated by a linear and an exponential term — and this
gives rise to the exponential integrate-and-fire model (Fourcaud-Trocme et al., 2003).

5.3 Quadratic integrate and fire

A specific instance of a nonlinear integrate-and-fire model is the guadratic model (Latham
et al., 2000; Hansel and Mato, 2001),

d
‘Cau:ao ( — ttrest) (u—ue) +RI, (5.16)

with parameters ag > 0 and u, > uyeq; see Fig. 5.8a. For I = 0 and initial condition u < u,,
the voltage decays to the resting potential us. For u > u, it increases so that an action
potential is triggered. The parameter u. can therefore be interpreted as the critical voltage
for spike initiation by a short current pulse. We will see in the next subsection that the
quadratic integrate-and-fire model is closely related to the so-called ®-neuron, a canonical
type-I neuron model (Ermentrout, 1996; Latham et al., 2000).

For numerical implementation of the model, the integration of Eq. (5.16) is stopped
if the voltage reaches a numerical threshold O and restarted with a reset value u, as
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Fig. 5.8 Quadratic integrate-and-fire model. (a) The quadratic integrate-and-fire model (dashed line),
compared with an exponential integrate-and-fire model (solid line). (b) The quadratic integrate-and-
fire model can be seen as an approximation of an exponential integrate-and-fire model (or any other
type I model) depolarized to a state close to repetitive firing. In (a) and (b), the value f(«) and
curvature d2f / du? are matched at u = Oy, Note that the rise in the quadratic model is slower in the
superthreshold regime u > Uyy.

new initial condition (Fig. 5.9b). For a mathematical analysis of the model, however, the
standard assumption is BGpeger — oo and u, — —oo.

We have seen in the previous section that experimental data suggests an exponential,
rather than quadratic nonlinearity. However, close to the threshold for repetitive firing, the
exponential integrate-and-fire model and the quadratic integrate-and-fire model become
very similar (Fig. 5.8b). Therefore the question arises whether the choice between the two
models is a matter of personal preference only.

For a mathematical analysis, the quadratic integrate-and-fire model is sometimes more
handy than the exponential one. However, the fit to experimental data is much better with
the exponential than with the quadratic integrate-and-fire model. For a prediction of spike
times and voltage of real neurons (see Fig. 5.5), it is therefore advisable to work with
the exponential rather than the quadratic integrate-and-fire model. Loosely speaking, the
quadratic model is too nonlinear in the subthreshold regime and the upswing of a spike is
not rapid enough once the voltage is above threshold. The approximation of the exponential
integrate-and-fire model by a quadratic one only holds if the mean driving current is close
to the rheobase current.

Example: Approximating the exponential integrate-and-fire

Let us suppose that an exponential integrate-and-fire model is driven by a depolariz-
ing current that shifts its effective equilibrium potential u close to the rheobase firing
threshold ¥;;,. The stable fixed points at u = u‘jff and the unstable fixed point at u = ¥°f
corresponding to the effective firing threshold for pulse injection now lie symmetrically

around Oy, (Fig. 5.8b). In this region, the shape of the function f(u) is well approximated
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Fig. 5.9 Repetitive firing in nonlinear integrate-and-fire models. (a) Exponential integrate-and-fire
model and (b) quadratic integrate-and-fire model receiving a constant current sufficient to elicit repet-
itive firing. Note the comparatively slow upswing of the action potential in the quadratic integrate-
and-fire model. Numerical simulation with parameters of equivalent models as illustrated in Fig. 5.8.

by a quadratic function (dashed line). In other words, in this regime the exponential and
quadratic integrate-and-fire neuron become identical.

If the constant input current is increased further, the stable and unstable fixed point
move closer together and finally merge and disappear at the bifurcation point, corre-
sponding to a critical current /.. More generally, any type I neuron model close to the
bifurcation point can be approximated by a quadratic integrate-and-fire model — and this
is why it is sometimes called the “canonical” type I integrate-and-fire model (Ermen-
trout, 1996; Ermentrout and Kopell, 1986).

5.3.1 Canonical type I model (*)

In this section, we show that there is a one-to-one relation between the quadratic integrate-
and-fire model (5.16) and the canonical type I phase model,
d¢

E:[l—cosd)]—&—AI[l—&—cosd)], (5.17)

defined in Chapter 4; see Section 4.4.1 (Ermentrout, 1996; Ermentrout and Kopell, 1986).

Let us denote by Iy the minimal current necessary for repetitive firing of the quadratic
integrate-and-fire neuron. With a suitable shift of the voltage scale and constant current
I = Iy 4 Al the equation of the quadratic neuron model can then be cast into the form

— =’ +Al. (5.18)

For Al > 0 the voltage increases until it reaches the firing threshold ¥ > 1 where it is
reset to a value u, < —1. Note that the firing times are insensitive to the actual values
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of firing threshold and reset value because the solution of Eq. (5.18) grows faster than
exponentially and diverges for finite time (hyperbolic growth). The difference in the firing
times for a finite threshold of, say, ©# = 10 and ¥ = 10000 is thus negligible.

We want to show that the differential equation (5.18) can be transformed into the canon-
ical phase model (5.17) by the transformation

u(t) = tan (‘Pg)) . (5.19)

To do so, we take the derivative of (5.19) and use the differential equation (5.17) of the
generic phase model. With the help of the trigonometric relations dtanx/dx = 1/ cos?(x)
and 1+ cosx = 2cos?(x/2) we find

du 1 1d¢
dr ~ cos?(¢/2) 2 dr
=tan’(9/2) + Al = u*> + Al (5.20)

Thus Eq. (5.19) with ¢(¢) given by (5.17) is a solution to the differential equation of the
quadratic integrate-and-fire neuron. The quadratic integrate-and-fire neuron is therefore (in
the limit ¥ — oo and u,, — —eo) equivalent to the generic type I neuron (5.17).

5.4 Summary

The standard leaky integrate-and-fire model is rather limited in scope, since it has one uni-
versal voltage threshold. Nonlinear integrate-and-fire neurons, however, can account for
the fact that in real neurons the effective voltage threshold for repetitive firing is different
than the voltage threshold found with short current pulses. These two voltage thresholds,
which are related to the minimum of the nonlinearity f(«) and to the unstable fixed point,
respectively, are intrinsic features of nonlinear integrate-and-fire models. Once the mem-
brane potential is above the intrinsic threshold, the upswing of the membrane potential
starts. The integration is stopped at a numerical threshold Oes¢ Which is much higher and
conceptually very different than the intrinsic firing threshold of the model. In fact, the
exact value of the numerical threshold does not matter, since, without such a threshold, the
membrane potential would go to infinity in finite time.

In principle, many different forms of nonlinearity are imaginable. It turns out, how-
ever, that many neurons are well described by a linear term (the “leak” term) combined
with an exponential term (the “activation” term); see Fig. 5.4. Therefore, the exponential
integrate-and-fire model has the “correct” nonlinearity, whereas the quadratic integrate-
and-fire model is too nonlinear in the subthreshold regime and too slow in the superthresh-
old regime.
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Both the exponential and the quadratic integrate-and-fire model show a frequency—
current curve of type I. Indeed, close to the bifurcation point the two models become
identical and can be mapped onto the canonical type I model.

Literature

Nonlinear generalizations of the one-dimensional equation of the leaky integrate-and-fire
model can be found in the paper by Abbott and van Vreeswijk (1993). While the form of
the nonlinearity was left open at that time, analytical methods from bifurcation theory sug-
gested that there was a canonical one-dimensional model which describes the saddle-node-
onto-limit-cycle bifurcation of type I models. This is called the canonical type I model
or Theta model or Ermentrout—Kopell model (Ermentrout and Kopell, 1986; Ermentrout,
1996). While the quadratic nonlinearity in the voltage appeared in many early papers on
bifurcations and type I models (Ermentrout, 1996; Ermentrout and Kopell, 1986; Strogatz,
1994; Hoppensteadt and Izhikevich, 1997) the active use of the quadratic integrate-and-
fire model for simulations seems to have been started by Latham et al. in 2000 and later
popularized by Izhikevich (2007b).

Based on biophysical and mathematical arguments, the exponential integrate-and-fire
model was introduced in 2003 by Fourcaud-Trocme, Hansel, Vreeswijk and Brunel. While
the quadratic integrate-and-fire model is the canonically correct type I model close to the
bifurcation point, i.e., at the transition to repetitive firing, there is no fundamental reason
why the quadratic nonlinearity should also be correct further away from the threshold, and
it was unclear at that time what the nonlinearity of real neurons would look like. The issue
was settled by the work of Badel ef al. (2008a,b) who designed an experimental method to
measure the nonlinearity directly in experiments. The nonlinearity found in experiments is
extremely well matched by the exponential integrate-and-fire model.

The link between ion channel activation or inactivation in conductance-based neuron
models and the parameters of an exponential integrate-and-fire model with refractoriness
(Badel et al., 2008a,b) is discussed in the overview paper by Platkiewicz and Brette (2010).

We shall see in the next chapter that the single-variable exponential integrate-and-fire
model as it stands is not sufficient to account for the wide variety of neuronal firing patterns,
but needs to be complemented by a second variable to account for slow processes such as
adaptation — and this leads eventually to the adaptive exponential integrate-and-fire model.

Exercises

1. Quadratic vs. exponential integrate-and-fire. For a comparison of the two models, take a look
at Fig. 5.8b and answer the following questions:
(a) Show for the exponential integrate-and-fire model that the minimum of the nonlinearity
f(u) occurs at u = Vy,. Calculate the curvature d/du® f (u) at u = S
(b) Find parameters of the quadratic integrate-and-fire model so that it matches the location
and curvature of the exponential model in (a).
(c) Suppose that the value of the numerical threshold is Oreset = Uy + 2A7. When the threshold
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is reached the membrane potential is reset to u, = Oy, — 2Ar. Sketch qualitatively the trajectory
u(t) for both neuron models in the repetitive firing regime. Pay particular attention to the fol-
lowing questions: (i) For u > Uy, which of the two trajectories rises more rapidly towards the
numerical threshold? (ii) For u = Oy, do both trajectories have the same speed of rise du/dt or
a different one? (iii) For u < Uy, which of the two trajectories rises more rapidly? (iv) Should
your drawing of the trajectories follow any symmetry rules? Compare your results with Fig. 5.9.

2. Zero-curvature and rheobase threshold. Experimenters sometimes determine the threshold
voltage for spike initiation by searching for the zero-curvature point in the voltage trajectory,
Jjust before the upswing of the action potential. Show for a general nonlinear integrate-and-fire
model that the zero-curvature point is equivalent to the rheobase threshold ¥y,. Hints: (i) Min-
imal curvature means that the voltage trajectory passes through a point d*u / dr? = 0. (ii) Note
that the slope of the voltage trajectory du/dt is given by the function f(u). (iii) Recall that the
minimum of f is taken at u = V.

3. Exponential integrate-and-fire and sodium activation. 7o derive the exponential integrate-
and-fire model from a Hodgkin—Huxley model with multiple channels, follow the procedure indi-
cated in Section 5.2.2 and perform the following steps.

(a) Show that N linear currents can always be rewritten as one effective leak current ¥ g (u—
Ey) = gt (u— Eeff). Determine the effective conductance g*f and the effective reversal potential
Eeff,

(b) Assume that the sodium activation is rapid and approaches an equilibrium value my(u) =
1/{1+exp[—P (u— 6Oact)]} = 0.5{1 +tanh[—f (u— O4cr)/2]} where O, is the activation thresh-
old of the sodium channel and B the sharpness of the threshold. Using a Taylor expansion,
show that for u < 6, — B~ the activation function can be approximated by an exponential
mo () = exp[B (11— Ocr)].

(c) Assume that u < Oae; — B~1 < Eng and show that the sodium current

Ina = gNalmo(u)]? hrest (1 — Exa) (5.21)

gives rise to the exponential term.
(d) Using the steps (a) — (c), map (5.15) to the exponential integrate-and-fire model

du U—Urest = Ar (u — Y )
—exp|— |.

a — f(u) — _ -+ AT (5‘22)

T T

Determine the parameters ugeg, T and Ar.

4. Refractory exponential integrate-and-fire model and sodium inactivation. In the previous
exercise, we have assumed that h = heeg is constant throughout the spiking process. Repeat the
steps of the previous calculation, but set h(t) = hyest +x(t) and show that the sodium inactivation
dynamics leads to an increase in the the firing threshold a few milliseconds after the spike.

Hints. (i) Linearize the dynamics of gating variable h in the Hodgkin—Huxley model around
h = hyest 50 as to derive dx/dt = —x/7y. (ii) Assume that during each spike, the inactivation
variable h increases by a fixed amount Ah.

5. Quadratic integrate-and-fire model.

Consider the dimensionless quadratic integrate-and-fire model

d
4= (0 — trest) (u—ue) +1, (5.23)
With trest = —1 and u. = 1 and I = 0.
(a) Suppose that a trajectory starts at time t = 0 at —eo. How long does it take to get close to
the resting state and reach the value u = —1 — € where € < 1?

(b) Suppose that a trajectory is initialized at u(0) = 1+ ¢, where € < 1. How long does it take
to reach u = oo?

(c) Initialize as in (b) but stop the integration at u = Oreser. How long does the trajectory take
to reach the reset threshold? Is the difference between (b) and (c) important?
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Hint: Use [dx/[1 —x*] = arcoth(x) = 0.5[In(x + 1) — In(x — 1)] and cothh(x) = [e* +¢~*]/
[ —e™].
6. Gain function of the quadratic integrate-and-fire model.
We consider a quadratic integrate-and-fire model in the superthreshold regime

d 241 (5.24)
—u=u .
dr ’
with constant current 1 > 0.
(a) Give a transformation of variables from Eq. (5.23) to (5.24).
(b) Calculate the duration T of a trajectory which starts at time t = 0 at u(0) = —eo and ends
attime T at u(T) = +-oo.
Hint: Use [dx/[1+x%] = artan(x).
(c) Plot the frequency v = 1/T as a function of I.



6
Adaptation and firing patterns

When an experimenter injects a strong step current into the soma of a neuron, the response
consists of a series of spikes separated by long or short intervals. The stereotypical arrange-
ment of short, long or very long interspike intervals defines the neuronal firing pattern. In
Chapter 2 we have already encountered firing patterns such as tonic, adapting, or delayed
spike firing. In addition to these, several variants of burst firing have also been observed
in real neurons (see Fig. 6.1). This diversity of firing patterns can be explained, to a large
extent, by adaptation mechanisms which in turn depend on the zoo of available ion chan-
nels (Chapter 2) and neuronal anatomy (Chapter 3).

In order to describe firing patterns, and in particular adaptation, in a transparent mathe-
matical framework, we start in this chapter with the simplified model of spike initiation
from Chapter 5 and include a phenomenological equation for subthreshold and spike-
triggered adaptation. The resulting model is called the adaptive exponential integrate-and-
fire (AdEx; Section 6.1). We then use this simple model to explain the main firing patterns
(Section 6.2). In Section 6.3, we describe how the parameters of the subthreshold and
spike-triggered adaptation reflect the contribution of various ion channels and of dendritic
morphology. Finally, we introduce the Spike Response Model (SRM; Section 6.4) as a
transparent framework to describe neuronal dynamics. The Spike Response Model will
serve as a starting point for the Generalized Linear Models which we will discuss later, in
Chapter 9.

6.1 Adaptive exponential integrate-and-fire

In the previous chapter we have explored nonlinear integrate-and-fire neurons where the
dynamics of the membrane voltage is characterized by a function f(u). A single equation
is, however, not sufficient to describe the variety of firing patterns that neurons exhibit in
response to a step current. We therefore couple the voltage equation to abstract current
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variables wy, each described by a linear differential equation. The set of equations is

T % = f(u) =R Y wi+RIt), (6.1)
k
Tk% zak(u—urest)—wk—i-kakZS(t—tf). (62)

tf

The coupling of voltage to the adaptation current wy is implemented by the parameter
ay and evolves with time constant 7;. The adaptation current is fed back to the voltage
equation with resistance R. Just as in other integrate-and-fire models, the voltage variable
u is reset if the membrane potential reaches the numerical threshold ©yese;. The moment
u(t) = Opeser defines the firing time t/ =1. After firing, integration of the voltage restarts
at u = u,. The d-function in the wy equations indicates that, during firing, the adapta-
tion currents wy are increased by an amount b;. For example, a value by = 10 pA means
that the adaptation current wy is 10 pA stronger after a spike than it was just before the
spike. The parameters by are the “jump” of the spike-triggered adaptation. One possi-
ble biophysical interpretation of the increase is that during the action potential calcium
enters the cell so that the amplitude of a calcium-dependent potassium current is increased.
The biophysical origins of adaptation currents will be discussed in Section 6.3. Here we
are interested in the dynamics and neuronal firing patterns generated by such adaptation
currents. Various choices are possible for the nonlinearity f(u) in the voltage equation.
We have seen in the previous chapter (Section 5.2) that the experimental data suggests
a nonlinearity consisting of a linear leak combined with an exponential activation term,
F(u) = —(u— trest) + A7 €xp (%) . The adaptive exponential integrate-and-fire model
(AdEXx) consists of such an exponential nonlinearity in the voltage equation coupled to a
single adaptation variable w

d -
de%t = — (U — Urest) + A7 €Xxp <M rh) —Rw+RI(1), (6.3)
T
dw f
fwa:a(u—urest)—w+bfwz5(l—l )- (6.4)

if

At each threshold crossing the voltage is reset to u# = u, and the adaptation variable w is
increased by an amount b. Adaptation is characterized by two parameters: the parameter
a is the source of subthreshold adaptation because it couples adaptation to the voltage.
Spike-triggered adaptation is controlled by a combination of a and b. The choice of a and
b largely determines the firing patterns of the neuron (Section 6.2) and can be related to
the dynamics of ion channels (Section 6.3). Before exploring the AdEx model further, we
discuss two other examples of adaptive integrate-and-fire models.

Example: Izhikevich model

While the AdEx model exhibits the nonlinearity of the exponential integrate-and-fire
model, the Izhikevich model uses the quadratic integrate-and-fire model for the first
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Fig. 6.1 Multiple firing patterns in cortical neurons. For each type, the neuron is stimulated with
a step current with low or high amplitude. Modified from Markram et al. (2004).

equation
rm% — (= o) (1 — ) — Rw+ RI(t), ©5)
dW f
Tw— = a(U—lrest) —W+bTy 3 6(t—1/). (6.6)

dr "
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Fig. 6.2 Multiple firing patterns in the AdEx neuron model. For each set of parameters, the model is
stimulated with a step current with low or high amplitude. The spiking response can be classified by
the steady-state firing behavior (vertical axis: tonic, adapting, bursting) and by its transient initiation
pattern as shown along the horizontal axis: tonic (i.e., no special transient behavior), initial burst, or
delayed spike initiation.

If u = Oyeset, the voltage is reset to u = u, and the adaptation variable w is increased by
an amount b. Normally b is positive, but b < 0 is also possible.
Example: Leaky model with adaptation

Adaptation variables wy can also be combined with a standard leaky integrate-and-fire
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Type Fig. 7, (ms) a@mS) 1t,(ms) b(@PA) u,(mV)

Tonic 6.3a 20 0.0 30.0 60 =55
Adapting  6.3b 200 0.0 100 5.0 -55
Init. burst  6.4a 5.0 0.5 100 7.0 —51
Bursting  6.4c 5.0 -0.5 100 7.0 —46
Irregular  6.5a 9.9 —-0.5 100 7.0 —46
Transient  6.9a 10 1.0 100 10 —60

Delayed  6.9¢c 5.0 -1.0 100 10 —60

Table 6.1 Exemplar parameters for the AdEx model. In all cases, the resting potential
was ugest = —70mV, the resistance was R = 500 MQ, the threshold was ¥y, = —50mV
with sharpness Ar = 2mV, and the current step was fixed to 65 pA except for “delayed”
where it was at 25 pA.

model
du
Tma:—(u—urest)_szk+Rl(t)a (6.7)
k
dw,
deitk :a(u*urest)_wk‘f'bk’[k 26(t_tf)' (6.8)
tf

At the moment of firing, defined by the threshold condition u(t/) = Byeser, the voltage
is reset to u = u, and the adaptation variables wy are increased by an amount b;. Note
that in the leaky integrate-and-fire model the numerical threshold B¢ coincides with
the voltage threshold ¢} that one would find with short input current pulses.

6.2 Firing patterns

The AdEx model is capable of reproducing a large variety of firing patterns that have
been observed experimentally. In this section, we show some typical firing patterns, and
show how the patterns can be understood mathematically, adapting the tools of phase plane
analysis previously encountered in Chapter 4.

6.2.1 Classification of firing patterns

How are the firing patterns classified? Across the vast field of neuroscience and over more
than a century of experimental work, different classification schemes have been proposed.
For a rough qualitative classification (Fig. 6.2, exemplar parameters in Table 6.1), it is
advisable to separate the steady-state pattern from the initial transient phase (Markram
et al., 2004). The initiation phase refers to the firing pattern right after the onset of the
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Fig. 6.3 Tonic and adapting firing patterns in the AdEx model. (a) Tonic spiking with a strong spike-
triggered current (b = 60 pA) of short duration (7,, = 30 ms). (b) If the reset (empty squares) leads to
a value above the u-nullcline, the trajectories make a detour to lower values of u. (c) Spike-frequency
adaptation with a weak spike-triggered current (b = 5 pA) and slow decay (7, = 100 ms). (d) If the
reset lands below the u-nullcline, the membrane potential immediately increase towards the next
spike. Parameters in Table 6.1.

current step. There are three main initiation patterns: the initiation cannot be distinguished
from the rest of the spiking response (tonic); the neuron responds with a significantly
greater spike frequency in the transient (initial burst) than in the steady state; the neuronal
firing starts with a delay (delay).

After the initial transient, the neuron exhibits a steady-state pattern. Again there are
three main types: regularly spaced spikes (tonic); gradually increasing interspike intervals
(adapting); or regular alternations between short and long interspike intervals (bursting).
Irregular firing patterns are also possible in the AdEx model, but their relation to irregular
firing patterns in real neurons is less clear because of potential noise sources in biological
cells (Chapter 7). The discussion in the next sections is restricted to deterministic models.

Example: Tonic, adapting and facilitating

When the subthreshold coupling a is small and the voltage reset is low (i, X Urest),
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Fig. 6.4 Phase plane analysis of initial bursting and sustained bursting patterns. (a) Voltage trace
of an AdEx model with parameters producing an initial burst. (b) In the phase plane, the initial
burst is generated by a series of resets below the u-nullcline. Only the fourth reset arrives above the
u-nullcline. (c) Voltage trace of an AdEx model exhibiting regular bursts. (d) The phase plane for
regular bursting is similar to those of initial burst, except that the first reset above the u-nullcline
yields a trajectory that travels below at least one of the previous resets. Hence, the neuron model
alternates between direct and detour resets.

the AdEX response is either tonic or adapting. This depends on the two parameters regu-
lating the spike-triggered current: the jump b and the time scale 7,,. A large jump with a
small time scale creates evenly spaced spikes at low frequency (Fig. 6.3a). On the other
hand, a small spike-triggered current decaying on a long time scale can accumulate
strength over several spikes and therefore successively decreases the net driving cur-
rent / —w (Fig. 6.3b). In general, weak but long-lasting spike-triggered currents cause
spike-frequency adaptation, while short but strong currents lead only to a prolongation
of the refractory period. There is a continuum between purely tonic spiking and strongly
adapting.

Similarly, when the spike-triggered current is depolarizing (b < 0) the interspike inter-
val may gradually decrease, leading to spike-frequency facilitation.
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6.2.2 Phase plane analysis of nonlinear integrate-and-fire models in two dimensions

Phase plane analysis, which has been a useful tool to understand the dynamics of the
reduced Hodgkin—Huxley model (Chapter 4), is also helpful to illustrate the dynamics of
the AdEx model. Let us plot the two state variables u(¢) and w(¢) in the plane and indicate
the regions where # = 0 (u-nullcline) and w = 0 (w-nullcline) with solid lines.

In the AdEx model, the nullclines look similar to the one-dimensional figures of the
exponential integrate-and-fire model in Chapter 5. The u-nullcline is again linear in the
subthreshold regime and rises exponentially when u is close to ¥. Upon current injection,
the u-nullcline is shifted vertically by an amount proportional to the magnitude of the
current /. The w-nullcline is a straight line with a slope tuned by the parameter a. If there
is no coupling between the adaptation variable and the voltage in the subthreshold regime
(a = 0), then the w-nullcline is horizontal. The fixed points are the points where the curved
u-nullcline intersects with the straight w-nullcline. Solutions of the system of differential
equations (6.3) and (6.4) appear as a trajectory in the (u, w)-plane.

In constrast to the two-dimensional models in Chapter 4, the AdEx model exhibits a reset
which correspond to a jump of the trajectory. Each time the trajectory reaches u = Beget,
it will be reinitialized at a reset value (u,,w + b) indicated by an empty square (Fig. 6.3).
We note that for the voltage variable the reinitialization occurs always at the same value
u = u,; for the adaptation variable, however, the reset involves a vertical shift upwards by
an amount b compared with the value of w just before the reset. Thus, the reset maps w to
a potentially new initial value after each firing.

There are three regions of the phase plane with qualitatively different ensuing dynamics.
These regions are distinguished by whether the reset point is in a region where trajectories
are attracted to the stable fixed point or not; and whether the reset is above or below the
u-nullcline. Trajectories attracted to a fixed point will simply converge to it. Trajectories
not attracted to a fixed point all go eventually to B.ese¢ but they can do so directly or with a
detour. A detour is introduced whenever the reset falls above the u-nullcline, because in the
area above the u-nullcline the derivative is & < 0 so that the voltage u(r) must first decrease
before it can eventually increase again. Thus a “detour reset” corresponds to a downswing of
the membrane potential after the end of the action potential. The distinction between detour
and direct resets is helpful to understand how different firing patterns arise. Bursting, for
instance, can be generated by a regular alternation between direct resets and detour resets.

Example: Bursting

Before considering regular bursting, we describe the dynamics of an initial burst. By
definition, an initial burst means a neuron first fires a group of spikes at a considerably
higher spiking frequency than the steady-state frequency (Fig. 6.4a). In the phase plane,
initial bursting is caused by a series of one or more direct resets followed by detour
resets (Fig. 6.4b). This firing pattern may appear very similar to strong adaptation where
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Fig. 6.5 Phase plane analysis of an irregular firing pattern. (a) Voltage trace of an AdEx model
showing irregularly spaced spikes. (b) The evolution of trajectories in the phase plane during the
simulation in (a) shows that the model switches irregularly between direct and detour resets.

the first spikes also have a larger frequency, but the shape of the voltage trajectory after
the end of the action potential (downswing or not) can be used to distinguish between
adapting (strictly detour or strictly direct resets) and initial bursting (first direct then
detour resets).

Regular bursting can arise from a similar process, by alternation between direct and
detour resets. In the phase plane, regular bursting is made possible by a reset u;, higher
than the effective threshold ©}. After a series of direct resets, the first reset that falls above
the u-nullcline must make a large detour and is forced to pass under the u-nullcline.
When this detour trajectory is mapped below at least one of the previous reset points,
the neuron may burst again (Fig. 6.4b).

While the AdEx can generate a regular alternation between direct and detour resets,
it can also produce an irregular alternation (Fig. 6.5). Such irregular firing patterns can
occur in the AdEx model despite the fact that the equations are deterministic. The aperi-
odic mapping between the two types of reset is a manifestation of chaos in the discrete
map (Naud et al., 2008; Touboul and Brette, 2008). This firing pattern appears for a
restricted set of parameters such that, unlike regular and initial bursting, it occupies a
small and patchy volume in parameter space.

6.2.3 Exploring the space of reset parameters

The AdEx model in the form of Eqgs. (6.3) and (6.4) has nine parameters. Some combi-
nations of parameters lead to initial bursting, others to adaptation, yet others to delayed
spike onset, and so on. As we change parameters, we find that each firing pattern occurs
in a restricted region of the nine-dimensional parameter space — and this can be labeled by
the corresponding firing pattern, e.g., bursting, initial bursting, or adaptive. While inside
a given region the dynamics of the model can exhibit small quantitative changes; the big
qualitative changes occur at the transition from one region of parameter space to the next.
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Fig. 6.6 Parameter space of the AJEx model. (a) Combinations of the voltage reset u, and of the
spike-triggered jump b of the adaptation current leading to a tonic (t), adapting (a), initial burst (i) and
bursting (b) firing patterns for a long adaptation time constant (7,, = 100 ms) and small subthreshold
coupling (a = 0.001 nS). (b) Same as (a) but for 7,, = 5 ms. Current was switched from zero to twice
the rheobase current and all other parameters are fixed at 7, = 10ms, R = 100 MQ, urese = —70 mV,
Uih = —50mV and Ar =2 mV.

Thus, boundaries in the parameter space mark transitions between different types of firing
pattern — which are often correlated with types of cells.

To illustrate the above concept of regions inside the parameter space, we apply a step
current with an amplitude twice as large as the minimal current necessary to elicit a spike
and study the dependence of the observed firing pattern on the reset parameters u, and b
(Fig. 6.6). All the other parameters are kept fixed. We find that the line separating initial
bursting and tonic firing resembles the shape of the u-nullcline. This is not unexpected
given that the location of the reset with respect to the u-nullcline plays an important role in
determining whether the reset is “direct” or leads to a “detour.” Regular bursting is possible,
if the voltage reset u, is located above the voltage threshold . Irregular firing patterns are
found within the bursting region of the parameter space. Adapting firing patterns occur
only over a restricted range of jump amplitudes b of the spike-triggered adaptation current.

Example: Piecewise-linear model (*)

In order to understand the location of the boundaries in parameter space we consider
a piecewise-linear version of the AdEx model

- — Ures f = rhs
fu)= (S| i < O 6.9)

Ar(u—up) otherwise,
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Fig. 6.7 Piecewise-linear model. (a) Parame-
ter space analogous to Fig. 6.6 but for the
piecewise-linear model. (b) Evolution of the
1 X 970 60 50 a0 trajectory (thick solid lines) in the phase plane
u[mV] during tonic spiking. Open squares indicate
the initial condition and resets after the first,
second, and third spike. Nullclines drawn as
thin solid lines. The trajectories follow the u-
nullcline at a distance x (inset). The u-nullcline
before the application of the step current is

® shown with a dashed line. (c¢) As in (b), but dur-
0 ing regular bursting.
with
Oyh — U
Up = By + — (6.10)
Ar

which we insert into the voltage equation 7,,du/dt = f(u) + RI — Rw; compare Eq. (6.1)
with a single adaptation variable of the form (6.2). Note that the u-nullcline is given by
w = f(u)/R+1 and takes at u = Uy, its minimum value win = f(Om)/R+1.

We assume separation of time scale (7,,/7,, << 1) and exploit the fact that the trajec-
tories in the phase plane are nearly horizontal (w takes a constant value) — unless they
approach the u-nullcline. In particular, all trajectories that start at a value w, < wp, stay
horizontal and pass unperturbed below the u-nullcline.

To determine the firing pattern, we need to map the initial condition (u,,w,) after a
first reset to the value w, of the adaptation variable at the end of the trajectory: w, =
M (uy,w,). The next reset starts then from (u,,w, + b) and with the help of the mapping
function M we can iterate the above procedure. We know already that all trajectories
with w, < wp;, remain horizontal, so that w, = w,.

The more interesting situation is w, > wpi,. We distinguish two possible cases. The
first one corresponds to a voltage reset below the threshold, u, < . A trajectory ini-
tiated at u, < Oy evolves horizontally until it comes close to the left branch of the
u-nullcline. It then follows the u-nullcline at a small distance x(u) below it (see Sec-
tion 4.6). This distance can be shown to be

x(u) = i—”’ 1= (a+R ") (- tirew)] 6.11)

w
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Fig. 6.8 Hopf bifurcation and space of subthreshold parameters. (a) Nullclines and fixed points
(filled and open circles) during a Hopf bifurcation. A step current / shifts the u-nullcline upward
(solid line). The stability of the stable fixed point (filled circle) is lost in a Hopf bifurcation before
the two fixed points merge. If it is not lost before the merge then the bifurcation is saddle-node.
(b) The ratio of time constants T, /7, (horizontal axis) and the factor a R which controls the coupling
between voltage and adaptation. The straight diagonal line separates the region where the station-
ary state of the system loses stability through a Hopf bifurcation (aR > T,/ Ty) from the region of
saddle-node bifurcation. The linear response of the subthreshold dynamics is characterized as res-
onator (dotted region), integrator (blank), or mixed (stripes).

which vanishes in the limit 7,/7, — 0. When the u-nullcline reaches its mini-
mum, the trajectory is again free to evolve horizontally. Therefore the final w-value
of the trajectory is the one it takes at the minimum of the u-nullcline, so that for
ur < O

W, ifw, < f(Om)/R+1,

M(uy,wy) = {f(l‘/‘rh)/R"‘I otherwise.

(6.12)
If u, > Oy, then we have a direct reset (i.e., movement starts to the right) if (u,, w,) lands
below the right branch of the u-nullcline (Fig. 6.7c) and a detour reset otherwise

Wy ifw, < f(u,)/R+1,
M(ur, wr) = {f(ﬁrh)/R—i—I otherwise. (6.13)
The map M uniquely defines the firing pattern. Regular bursting is possible only if u, >
U and b < f(u,) — f(Om) so that at least one reset in each burst lands below the u-
nullcline (Fig. 6.7a). For u, > ¥y, we have tonic spiking with detour resets when b >
f(u,) +1I and initial bursting if f(u,) +1>b > f(u;) — f(Om) +x(On)-

If u, < ¥ we have tonic spiking with detour resets when b > f(u,) + I, tonic spiking
with direct reset when b < f(u,) — f (O ) and initial bursting if f(u,) +1>b > f(u,) —
f (). Note that the rough layout of the parameter regions in Fig. 6.7a, which we just
calculated analytically, matches qualitatively the organization of the parameter space in
the AdEx model (Fig. 6.6).
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6.2.4 Exploring the space of subthreshold parameters

While the exponential integrate-and-fire model loses stability always via a saddle-node
bifurcation, the AdEx can become unstable either via a Hopf or a saddle-node bifurca-
tion. Thus, we see again that the addition of an adaptation variable leads to a much richer
dynamics.

In the absence of external input, the AdEx has two fixed points, a stable one at us and
an unstable one at some value u > ¥y,. We recall from Chapter 4 that a gradual increase
of the driving current corresponds to a vertical shift of the u-nullcline (Fig. 6.8a), and to
a slow change in the location of the fixed points. The stability of the fixed points, and
hence the potential occurrence of a Hopf bifurcation, depends on the slope of the u- and
w-nullclines. In the AdEx, an eigenvalue analysis shows that the stable fixed point loses
stability via a Hopf bifurcation if aR > 1,,/7,,. Otherwise, when the coupling from voltage
to adaptation (parameter a) and back from adaptation to voltage (parameter R) are both
weak (aR < T,/T,), an increase in the current causes the stable fixed point to merge with
the unstable one, so that both disappear via a saddle-node bifurcation — just like in the
normal exponential integrate-and-fire model. Note, however, that the type of bifurcation
has no influence on the firing pattern (bursting, adapting, tonic), which depends mainly on
the choice of reset parameters.

However, the subthreshold parameters do control the presence or absence of oscillations
in response to a short current pulse. A model showing damped oscillations is often called
a resonator while a model without is called an integrator. We have seen in Chapter 4 that
Hopf bifurcations are associated with damped oscillations, but this statement is valid only
close to the bifurcation point or rheobase-threshold. The properties can be very different
far from the threshold. Indeed, the presence of damped oscillations depends nonlinearly on
a/gr and 1,/7, as summarized in Fig. 6.8b. The frequency of the damped oscillation is

given by
4 21, 2
w:[aR—Tw<1—Tm) ] (6.14)
Ty Tm Tw

Example: Transient spiking

Upon the onset of a current step, some neurons may fire a small number of spikes
and then remain silent, even if the stimulus is maintained for a very long time. An AdEx
model with subthreshold coupling @ > 0 can explain this phenomenon whereas pure
spike-triggered adaptation (a = 0;b > 0) cannot account for it, because adaptation would
eventually decay back to zero so that the neuron fires another spike.

To understand the role of subthreshold coupling, let us choose parameters a and 7,
such that the neuron is in the resonator regime. The voltage response to a step input
then exhibits damped oscillations (Fig. 6.9a). Similar to the transient spiking in the
Hodgkin—Huxley model, the AJdEx can generate a transient spike if the peak of the
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Fig. 6.9 Phase plane analysis of transient spiking in the AdEx model. (a) Voltage trace of an AdEx
model with parameters producing transient spiking upon a strong step current input (solid line marked
ii). A weaker step input generates damped oscillations (dashed line marked 7). (b) Phase plane with
nullclines after application of the strong (solid lines: u- and w-nullclines) or weak step current
(dashed line: u-nullcline). Upon injection of the weak step, the stable fixed point is reached after
a short transient. Upon injection of the strong current, a stable fixed point remains, but the initial
state is outside the region where it would be attracted to the stable fixed point. Only after the second
reset (open squares), does the trajectory converge to the fixed point.

oscillation is sufficient to reach the firing threshold. Phase plane analysis reveals that
sometimes several resets are needed before the trajectory is attracted towards the fixed
point (Fig. 6.9b). In Chapter 2, damped oscillations were due to sodium channel inacti-
vation or ;. Indeed, the subthreshold coupling can be seen as a simplification of 7, but
many other biophysical mechanisms can be responsible.

6.3 Biophysical origin of adaptation

We have introduced, in Section 6.1, formal adaptation variables w; which evolve according
to a linear differential equation (6.2). We now show that the variables wy can be linked to
the biophysics of ion channels and dendrites.

6.3.1 Subthreshold adaptation by a single slow channel

First we focus on one variable w at a time and study its subthreshold coupling to the
voltage. In other words, the aim is to give a biophysical interpretation of the parameters a,
Ty, and the variable w that show up in the adaptation equation
dw
TWE
The biophysical components of spike-triggered adaptation (i.e., the interpretation of the
reset parameter b) is deferred to Section 6.3.2. Here and in the following we write Ey
instead of ueq in order to simplify notation and keep the treatment slightly more general.

=a(u—Ep)—w. (6.15)
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As discussed in Chapter 2, neurons contain numerous ion channels (Section 2.3). Rapid
activation of the sodium channels, important during the upswing of action potentials, is
well approximated (Fig. 5.4) by the exponential nonlinearity in the voltage equation of the
AdEx model, Eq. (6.3). We will see now that the subthreshold current w is linked to the
dynamics of other ion channels with a slower dynamics.

Let us focus on the model of a membrane with a leak current and a single, slow, ion
channel, say a potassium channel of the Hodgkin—Huxley type

du
Tma = 7(M7EL)7RLgKnp (ufEK)+RLIext, (6.16)

where Ry, and Ej are the resistance and reversal potential of the leak current, 7,, = R;.C is
the membrane time constant, gx the maximal conductance of the open channel and n the
gating variable (which appears with arbitrary power p) with dynamics

dn _ n—no(u)

T om 6.17)

As long as the membrane potential stays below threshold, we can linearize the equa-
tions (6.16) and (6.17) around the resting voltage Ey, given by the fixed point condition

Ey— EL + (R gx)no(Eo)? Ex
1+ (R gx) no(Eo)?
The resting potential is shifted with respect to the leak reversal potential if the channel is
partially open at rest, 119(Eq) > 0. We introduce a parameter B = gx pno(Eo)? "' (Eo — Ex)
and expand no(u) = no(Eo) + nj, (u — Eg) where nj, is the derivative dno/du evaluated at
Ey.
The variable w = B [n — ng(Ep)] then follows the linear equation

(6.18)

T,,(Eo)%v =a(u—Ey)—w. (6.19)

We emphasize that the time constant of the variable w is given by the time constant of
the channel at the resting potential. The parameter a is proportional to the sensitivity of
the channel to a change in the membrane voltage, as measured by the slope dng/du at the
equilibrium potential Ey.

The adaptation variable w is coupled into the voltage equation in the standard form

eff ilt‘ = —(u—Ep) —Rw+Rlex. (6.20)
Note that the membrane time constant and the resistance are rescaled by a factor [1 +
(Rpgk)no(Eo)?]~" with respect to their values in the passive membrane equation,
Eq. (6.16). In fact, both are smaller because of partial opening of the channel at rest.

In summary, each channel with nonzero slope dng/du at the equilibrium potential E
gives rise to an effective adaptation variable w. Since there are many channels, we can
expect many variables wy. Those with similar time constants can be summed and grouped
into a single equation. But if time constants are different by an order of magnitude or more,
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Type Fig. Act/inact. 71, (ms) f (pA) a(nS) Oy b (pA)
INa 2.3 inact. 20 —120 5.0 - —
Iy 2.13 act. 61 12 0.0 0.0085 0.1
Iz 2.14 act. 33 12 0.3 0.04 0.5
Inva + ke 215 act. 150 12 0 0.05 0.6
I 2.17 inact. 8.5 —48 0.8 — —

Inas 2.18 act 200 —-120  —0.08 0.0041 —0.48

Table 6.2 Parameter values for ion channels presented in Chapter 2 for model linearized
around —65 mV for Rgx = 1. The action potential is assumed to consist of a pulse of 1 ms
duration at 0mV. The approximation to obtain 8, and b is valid only when T,(0mV) is
significantly larger than one millisecond.

then several adaptation variables are needed, which leads to the model equations (6.1)
and (6.2).

6.3.2 Spike-triggered adaptation arising from a biophysical ion channel

‘We have seen in Chapter 2 that some ion channels are partially open at the resting potential,
while others react only when the membrane potential is well above the firing threshold. We
now focus on the second group in order to give a biophysical interpretation of the jump
amplitude b of a spike-triggered adaptation current.

Let us return to the example of a single ion channel of the Hodgkin and Huxley type such
as the potassium current in Eq. (6.16). In contrast to the treatment earlier, we now study the
change in the state of the ion channel induced during the large-amplitude excursion of the
voltage trajectory during a spike. During the spike, the target no(u) of the gating variable is
close to 1; but since the time constant 7, is long, the target is not reached during the short
time that the voltage stays above the activation threshold. Nevertheless, the ion channel
is partially activated by the spike. Unless the neuron is firing at a very large firing rate,
each additional spike activates the channel further, always by the same amount A,, which
depends on the duration of the spike and the activation threshold of the current (Table 6.2).
The spike-triggered jump in the adapting current w is then

b=BA,, 6.21)

where B = gk pno(Eo)?~! (Eo — Ex) has been defined before.

Again, real neurons with their large quantity of ion channels have many adaptation cur-
rents wy, each with its own time constant 7y, subthreshold coupling a; and spike-triggered
jump by. The effective parameter values depend on the properties of the ion channels
(Table 6.2).
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Fig. 6.10 Another type of bursting in a model with two spike-triggered currents. (a) Voltage trace of
the neuron model Egs. (6.3)—(6.4) with ueser = —55mV, ¥y, = —50mV, by = —12pA, by = 60 pA,
71 =20ms, 7o = 61 ms, a; = —3nS and a; = 0. Parameters were chosen to correspond to a neuron
coupled with a dendritic compartment and /y;. (b) Voltage deflection brought by an isolated spike.
Each spike brings first refractoriness, then a facilitation and finally adaptation on a longer time scale.

Example: Calculating the jump b of the spike-triggered adaptation current

We consider a gating dynamics

dn n—no(u)

— = 6.22

dr To(u) (6:22)
with the steplike activation function ng(u) = ©(u — u§™") where uj™ = —30 mV and

T,(u) = 100 ms independent of u. Thus, the gating variable n approaches a target value
of 1 whenever the voltage u is above the activation threshold #™. Since the activation
threshold of —30 mV is above the firing threshold (typically in the range of —40 mV)
we can safely state that the neuron activation of the channel can only occur during an
action potential. Assuming that during an action potential the voltage remains above u§™
for + = 1 ms, we can integrate Eq. (6.22) and find that each spike causes an increase
A, = t/1, where we have exploited that r < T,. If we plug in the above numbers, we
see that each spike causes an increase of n by a value of 0.01. If the duration of the
spike were twice as long, the increase would be 0.02. After the spike the gating variable
decays with the time constant 7,, back to zero. The increase A, leads to a jump amplitude
of the adaptation current given by Eq. (6.21).
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6.3.3 Subthreshold adaptation caused by passive dendrites

While in the previous section, we have focused on the role of ion channels, here we
show that a passive dendrite can also give rise to a subthreshold coupling of the form
of Eq. (6.15).

We focus on a simple neuron model with two compartments, representing the soma and
the dendrite, superscripts s and d respectively. The two compartments are both passive
with membrane potential V*, V9, transversal resistance Ry, R%, capacity C°, CY and resting
potential u,, E4. The two compartments are linked by a longitudinal resistance Ry (see
Chapter 3). If current is injected only in the soma, then the two-compartment model with
passive dendrites corresponds to

Ay L[V = ttew) vs—yd
a

s % R +1(z)] , (6.23)

d_ pd d_ s
dvdl[_(v E9)_V V], (6.24)

& RS R
Such a system of differential equations can be mapped to the form of Eq. (6.15) by con-

sidering that the variable w represents the current flowing from the dendrite into the soma.
In order to keep the treatment transparent, we assume that £ d — Uit = E. In this case the

adaptation current is w = — (V¢ — u,s) /RL and the two equations above reduce to
dvs !
eff & =V -E)- Rty (6.25)
d
rwd—v; —a(VS—E)—w (6.26)

with an effective input resistance R°" = RS /[1 + (R5./RL)], an effective somatic time con-
stant 7" = CS R°MT, an effective adaptation time constant 7,, = R C¢/[1 + (RL/Rp)] and a
coupling between somatic voltage and adaptation current a = —[Ry. + (R? /Rp)] .

There are three conclusions we should draw from this mapping. First, a is always neg-
ative, which means that passive dendrites introduce a facilitating subthreshold coupling.
Second, facilitation is particularly strong with a small longitudinal resistance. Third, the
timescale of the facilitation 7,, is smaller than the dendritic time constant R%CCl — so that,
compared with other “adaptation” currents, the dendritic current is a relatively fast one.

In addition to the subthreshold coupling discussed here, dendritic coupling can also lead
to a spike-triggered current as we shall see in the next example.

Example: Bursting with a passive dendrite and /j;

Suppose that the action potential can be approximated by a 1 ms pulse at 0mV. Then
each spike brings an increase in the dendritic membrane potential. In terms of the
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current w, the increase is b = —aEy(1 — e' ™/™). Again, the spike-triggered jump is
always negative, leading to spike-triggered facilitation. Figure 6.10 shows an example
where we combined a dendritic compartment with the linearized effects of the M-current
(Table 6.2) to result in regular bursting. The bursting is mediated by the dendritic facil-
itation which is counterbalanced by the adapting effects of Iy;. The firing pattern looks
different to the bursting in the AdEx (Fig. 6.4) as there is no alternation between detour
and direct resets. Indeed, many different types of bursting are possible (see Izhike-
vich 2007a). This example (especially Fig. 6.10b) suggests that the dynamics of spike-
triggered currents on multiple time scales can be understood in terms of their stereotyp-
ical effect on the membrane potential — and this insight is the starting point for the Spike
Response Model in the next section.

6.4 Spike Response Model (SRM)

So far, we have described neuronal dynamics in terms of systems of differential equations.
There is another approach that was introduced in Section 1.3.5 as the “filter picture.” In this
picture, the parameters of the model are replaced by (parametric) functions of time, gener-
ically called “filters.” The neuron model is therefore interpreted in terms of a membrane
filter as well as a function describing the shape of the spike (Fig. 6.11) and, potentially, also
a function for the time course of the threshold. Together, these three functions establish the
Spike Response Model (SRM).

The Spike Response Model is — just like the nonlinear integrate-and-fire models in Chap-
ter 5 or the AdEx in Section 6.1 — a generalization of the leaky integrate-and-fire model. In
contrast to nonlinear integrate-and-fire models, the SRM has no “intrinsic” firing threshold
but only the sharp numerical threshold for reset. If the nonlinear function of the AdEX is fit-
ted to experimental data, the transition between the linear subthreshold and superthreshold
behavior is found to be rather abrupt, so that the nonlinear transition is, for most neurons,
well approximated by a sharp threshold (see Fig. 5.3). Therefore, in the SRM, we work
with a sharp threshold combined with a linear voltage equation.

While the SRM is therefore somewhat simpler than other models on the level of the
spike generation mechanism, the subthreshold behavior of the SRM is richer than that
of the integrate-and-fire model discussed so far and can account for various aspects of
refractoriness and adaptation. In fact, the SRM combines the most general linear model
with a sharp threshold.

It turns out that the integral formulation of the SRM is very useful for data fitting and
also the starting point for the Generalized Linear Models in Chapter 9 and 10. Despite the
apparent differences between integrate-and-fire models and the SRM, the leaky integrate-
and-fire model, with or without adaptation variables, is a special case of the SRM. The
relation of the SRM to integrate-and-fire models is the topic of Sections 6.4.3-6.4.4. We
now start with a detailed explanation.
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Fig. 6.11 Spike Response Model (SRM). Input current /(z) is filtered with a filter x(s) and yields the
input potential i(r) = ;" k(s)I(r — s)ds. Firing occurs if the membrane potential u reaches the thresh-
old ©. Spikes S(t) =¥, ; 0 (t — tf) are fed back into the threshold process in two distinct ways. Each
spike causes an increase 6; of the threshold: & (¢) = ¥y + [y 61 (s)S(t — s)ds. Moreover, each spike
generates a voltage contribution 1) to the membrane potential: u(r) = h(t) + f;° 1 (s)S(t — s)ds, where
n captures the time course of the action potential and the spike-afterpotential; schematic figure.

6.4.1 Definition of the SRM

In the framework of the Spike Response Model (SRM) the state of a neuron is described
by a single variable u which we interpret as the membrane potential. In the absence of
input, the variable u is at its resting value, ues. A short current pulse will perturb u and
it takes some time before u returns to rest (Fig. 6.11). The function k(s) describes the
time course of the voltage response to a short current pulse at time s = 0. Because the
subthreshold behavior of the membrane potential is taken as linear, the voltage response
h to an arbitrary time-dependent stimulating current /°*'(¢) is given by the integral h(r) =
Jo x(s) I (t —s5) ds.

Spike firing is defined by a threshold process. If the membrane potential reaches the
threshold 19, an output spike is triggered. The form of the action potential and the after-
potential is described by a function 7. Let us suppose that the neuron has fired some earlier
spikes at times ¢/ < ¢. The evolution of u is given by

ZTI (t—t")+ / $)I%Y(1 — ) ds + threg;. (6.27)

The sum runs over all past firing times #/ with f = 1,2,3,... of the neuron under consid-
eration. Introducing the spike train S(t) = ¥, 8(t — /), Eq. (6.27) can be also written as a
convolution

u(t):/ n(s)S(t —s ds+/ It — 5)ds -+ tgest. (6.28)
0

In contrast to the leaky integrate-and-fire neuron discussed in Chapter 1 the threshold ¥
is not fixed, but time-dependent

d — D). (6.29)
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Firing occurs whenever the membrane potential u reaches the dynamic threshold () from

below

dfu(r) — 9 ()]
dt

Dynamic thresholds can be directly measured in experiments (Fuortes and Mantegazzini,

1962; Badel et al., 2008a; Mensi et al., 2012) and are a standard feature of phenomenolog-

ical neuron models.

t=t/ < u(t)=19()and >0. (6.30)

Example: Dynamic threshold — and how to get rid of it
A standard model of the dynamic threshold is
0(:):190+291(z—zf)=190+/ 61 (5)S(t — 5)ds, 6.31)
7 0

where ¥y is the “normal” threshold of neuron i in the absence of spiking. After each out-
put spike, the firing threshold of the neuron is increased by an amount 6y (r —t/) where
t/ <t denote the firing times in the past. For example, during an absolute refractory
period A", we may set 6; for a few milliseconds to a large and positive value so as to
avoid any firing and let it relax back to zero over the next few hundred milliseconds; see
Fig. 6.12a.

From a formal point of view, there is no need to interpret the variable u as the mem-
brane potential. It is, for example, often convenient to transform the variable u so as to
remove the time dependence of the threshold. In fact, a general Spike Response Model
with arbitrary time-dependent threshold as in Eq. (6.31) can always be transformed into
a Spike Response Model with fixed threshold ¥ by a change of variables

nie—t") — e —tH=nt—-1t) -6, —1). (6.32)

In other words, the dynamic threshold can be absorbed in the definition of the 1] kernel.
Note, however, that in this case 1 can no longer be interpreted as the experimentally
measured spike afterpotential, but must be interpreted as an “effective” spike afterpoten-
tial.

The argument can also be turned the other way round, so as to remove the spike after-
potential and only work with a dynamic threshold; see Fig. 6.12b. However, when an
SRM is fitted to experimental data, it is convenient to separate the spike after-effects that
are visible in the voltage trace (e.g., in the form of a hyperpolarizing spike-afterpotential,
described by the kernel 1), from the spike after-effects caused by an increase in the
threshold which can be observed only indirectly via the absence of spike firing. Whereas
the prediction of spike times is insensitive to the relative contribution of 1 and 6y, the
prediction of the subthreshold voltage time course is not. Therefore, it is useful to explic-
itly work with two distinct adapatation mechanisms in the SRM (Mensi et al., 2012).
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Fig. 6.12 Spike-afterpotential and dynamic threshold in the SRM. (a) At time #/ a spike occurs
because the membrane potential hits the threshold ©¥(z). The threshold jumps to a higher value
(dashed line) and, at the same time, a contribution 7 (¢ — tf ) is added to the membrane potential,
i.e., the spike and its spike-afterpotential are “pasted” into the picture. If no further spikes are trig-
gered, the threshold decays back to its resting value and the spike-afterpotential decays back to zero.
The total membrane potential (thick solid line) after a spike is u(t) = h(t) + X n(t — £ where h(t)
is the input potential (thin dotted line). (b) If the model is used to predict spike times, but not the
membrane potential, the spike-afterpotential 1 can be integrated into the dynamic threshold so that
u(t) = h(r). At the moment of spiking the value of the threshold is increased, but the membrane
potential is not affected (either through reset or spike-afterpotential).

6.4.2 Interpretation of 1 and x

So far Eq. (6.27) in combination with the threshold condition (6.30) defines a mathematical
model. Can we give a biological interpretation of the terms?

The kernel x(s) is the linear response of the membrane potential to an input current. It
describes the time course of a deviation of the membrane potential from its resting value
that is caused by a short current pulse (“impulse response”).

The kernel 1 describes the standard form of an action potential of neuron i including the
negative overshoot which typically follows a spike (the spike-afterpotential). Graphically
speaking, a contribution 7 is “pasted in” each time the membrane potential reaches the
threshold ¥ (Fig. 6.12a). Since the form of the spike is always the same, the exact time
course of the action potential carries no information. What matters is whether there is the
event “spike” or not. The event is fully characterized by the firing time ¢/.

In a simplified model, the form of the action potential may therefore be neglected as long
as we keep track of the firing times /. The kernel 7 then describes simply the “reset” of
the membrane potential to a lower value after the spike at #/ just as in the integrate-and-fire
model

_+f
n(rrf)noexp<t t>, 633)

TEeCOV
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with a parameter 1y > 0. The spike-afterpotential decays back to zero with a recovery time
constant Trecoy. The leaky integrate-and-fire model is in fact a special case of the SRM,
with parameter g = (¥ — u,) and Trecov = T-

Example: Refractoriness

Refractoriness may be characterized experimentally by the observation that imme-
diately after a first action potential it is impossible (absolute refractoriness) or more
difficult (relative refractoriness) to excite a second spike. In Fig. 5.5. we have already
seen that refractoriness shows up as increased firing threshold and increased conduc-
tance immediately after a spike.

Absolute refractoriness can be incorporated in the SRM by setting the dynamic thresh-
old during a time A®* to an extremely high value that cannot be attained.

Relative refractoriness can be mimicked in various ways. First, after a spike the firing
threshold returns only slowly back to its normal value (increase in firing threshold).
Second, after the spike the membrane potential, and hence 1, passes through a regime of
hyperpolarization (spike-afterpotential) where the voltage is below the resting potential.
During this phase, more stimulation than usual is needed to drive the membrane potential
above threshold. In fact, this is equivalent to a transient increase of the firing threshold
(see above).

Third, the responsiveness of the neuron is reduced immediately after a spike. In the
SRM we can model the reduced responsiveness by making the shape of € and k depend
on the time since the last spike timing 7.

We label output spikes such that the most recent one receives the label 7! (i.e.,z > ¢! >
t> > 13...). This means that, after each firing event, output spikes need to be relabeled.
The advantage, however, is that the last output spike always keeps the label ¢'. For
simplicity, we often write 7 instead of #! to denote the most recent spike.

With this notation, a slightly more general version of the Spike Response Model is

u(t) = Sn(— 1)+ / "t —£,8) I (¢ — 5) ds + et (6.34)
f 0

6.4.3 Mapping the integrate-and-fire model to the SRM
In this section, we show that the leaky integrate-and-fire neuron with adaptation defined
above in Egs. (6.7) and (6.8) is a special case of the Spike Response Model. Let us recall
that the leaky integrate-and-fire model follows the equation of a linear circuit with resis-
tance R and capacity C

du;
T d—t = —(uwi—Eo) =R Y wi +RI (1), (6.35)
k
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where 7,, = RC is the time constant, Ey the leak reversal potential, wy, are adaptation vari-
ables, and /; is the input current to neuron i. At each firing time

{t/} € {tui(r) = 0}, (6.36)

the voltage is reset to a value u,. At the same time, the adaptation variables are increased
by an amount by

dedw;k:ak(u,-Eo)WkJerbkEflS(ttf). (6.37)
1)

The equations of the adaptive leaky integrate-and-fire model, Egs. (6.35) and (6.37), can
be classified as linear differential equations. However, because of the reset of the mem-
brane potential after firing, the integration is not completely trivial. In fact, there are two
different ways of proceeding with the integration. The first method is to treat the reset after
each firing as a new initial condition — this is the procedure typically chosen for a numer-
ical integration of the model. Here we follow a different path and describe the reset as a
current pulse. As we shall see, the result enables a mapping of the leaky integrate-and-fire
model to the SRM.

Let us consider a short current pulse I = —g &(¢) applied to the RC circuit. It removes
a charge ¢ from the capacitor C and lowers the potential by an amount Au = —¢q/C. Thus,
a reset of the membrane potential from a value of u = ¥ to a new value u = u, corresponds
to an “output” current pulse which removes a charge ¢ = C (% — u,). The reset takes place
every time when the neuron fires. The total reset current is therefore

() = —C (9 —u) ¥ 8t —1f), (6.38)
f

where the sum runs over all firing times tif . We add the output current (6.38) on the right-
hand side of (6.35),

du,-

Ty, = — (i~ Eo) —RY wi +RI(1) —RC (O —u,) Y, 8(t —1]), (6.39)
k f
dwk f
Tg, = k(i = Eo) —wi+ by 3 8(—17). (6.40)
tf

Since Egs. (6.39) and (6.40) define a system of linear equations, we can integrate each
term separately and superimpose the result at the end. To perform the integration, we pro-
ceed in three steps. First, we shift the voltage so as to set the equilibrium potential to
zero. Second, we calculate the eigenvalues and eigenvectors of the “free” equations in the
absence of input (and therefore no spikes). If there are K adaptation variables, we have a
total of K + 1 eigenvalues which we label as A1, A,,... The associated eigenvectors are e
with components (exo, €k, - - - ,ekK)T. Third, we express the response to an impulse Au = 1
in the voltage (no perturbation in the adaptation variables) in terms of the K + 1 eigen-
vectors: (1,0,0,... ,O)T = EkK:o Brex. Finally, we express the pulse caused by a reset of
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Fig. 6.13 SRM with a choice of 1 leading to adaptation. (a) The response of the neuron model to
injection of a step current. (b) The spike-afterpotential 7 with adaptation time constant 7,, = 100 ms.
A short (0.5 ms) period at +40 mV replaces the stereotypical shape of the action potential.

voltage and adaptation variables in terms of the eigenvectors (—® + u;,, b1, by, ... ,bK)T =

S Ve
The response to the reset pulses yields the kernel 17 while the response to voltage pulses
yields the filter x(s) of the SRM

ui(t) = Y0 —t)
f

+/°° (s) (¢ — 5) ds, (6.41)
0
with kernels
K
n(s) =Y, wexo exp(As)O(s), (6.42)
k=0
K
K(S) = z ﬁke‘ko exp(lk S) @(S) (6.43)
k=0

As usual, ©(x) denotes the Heaviside step function.

Example: Adaptation and bursting

Let us first study a leaky integrate-and-fire model with a single slow adaptation vari-
able t,, > 1, which is coupled to the voltage in the subthreshold regime (a > 0) and
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increased during spiking by an amount b. In this case there are only two equations,
one for the voltage and one for adaptation, so that the eigenvectors and eigenvalues
can be calculated “by hand.” With a parameter 0 = 7,,/T, < 1, the eigenvalues are
M = —1,[l —ad] and A, = —7,,8[1 +al, associated to eigenvectors e; = (1,a6)’
and ey = (1,—1+ 8 +ad)T. The resulting spike-afterpotential kernel 1(s) is shown
in Fig. 6.13b. Because of the slow time constant 7,, > 1, the kernel 1 has a long hyper-
polarizing tail. The neuron model responds to a step current with adaptation, because of
accumulation of hyperpolarizing spike-afterpotentials over many spikes.

As a second example, we consider four adaptation currents with different time con-
stants 7] < T» < 73 < T4. We assume pure spike-triggered coupling (a = 0) so that the
integration of the differential equations of wy, gives each an exponential current

wi (1) = b exp <—t_tf) ot —1). (6.44)
7 T

We choose the time constant of the first current to be very short and b; < 0 (inward
current) so as to model the upswing of the action potential (a candidate current would
be sodium). A second current (e.g., a fast potassium channel) with a slightly longer
time constant is outgoing (b, > 0) and leads to the downswing and rapid reset of the
membrane potential. The third current, with a time constant of tens of milliseconds,
is inward (b3 < 0), while the slowest current is again hyperpolarizing (b4 > 0). Inte-
gration of the voltage equation with all four currents generates the spike-afterpotential
n shown Fig. 6.14b. Because of the depolarizing spike-afterpotential induced by the
inward current w3, the neuron model responds to a step current of appropriate amplitude
with bursts. The bursts end because of the accumulation of the hyperpolarizing effect of
the slowest current.

6.4.4 Multi-compartment integrate-and-fire model as an SRM (*)

The models discussed in this chapter are point neurons, i.e., models that do not take into
account the spatial structure of a real neuron. In Chapter 3 we have already seen that the
electrical properties of dendritic trees can be described by compartmental models. In this
section, we want to show that neurons with a linear dendritic tree and a voltage threshold
for spike firing at the soma can be mapped to the Spike Response Model.

We study an integrate-and-fire model with a passive dendritic tree described by n
compartments. Membrane resistance, core resistance, and capacity of compartment [ are
denoted by RY, Rll“f, and CH, respectively. The longitudinal core resistance between com-
partment {1 and a neighboring compartment v is r*¥ = (R} + R})/2; see Fig. 3.8. Com-
partment (t = 1 represents the soma and is equipped with a simple mechanism for spike
generation, i.e., with a threshold criterion as in the standard integrate-and-fire model. The
remaining dendritic compartments (2 < ( < n) are passive.
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Fig. 6.14 SRM with choice of 1 leading to bursting. (a) The refractory kernel n of an integrate-
and-fire model with four spike-triggered currents. (b) The voltage response to a step current exhibits
bursting. Adapted from Gerstner et al. (1996b).

Each compartment 1 < u < n of neuron i may receive input Il-“ (¢) from presynaptic
neurons. As a result of spike generation, there is an additional reset current €;(¢) at the
soma. The membrane potential Vi“ of compartment y is given by

d

1 %2 |7/ A
o N L T R ) — SR Qu(r 6.45
' S TR ROTaw], 6

i

where the sum runs over all neighbors of compartment . The Kronecker symbol oY
equals unity if the upper indices are equal; otherwise, it is zero. The subscript i is the index
of the neuron; the upper indices u or v refer to compartments. Below we will identify the
somatic voltage Vl.l with the potential u; of the Spike Response Model.

Equation (6.45) is a system of linear differential equations if the external input current is
independent of the membrane potential. The solution of Eq. (6.45) can thus be formulated
by means of Green’s functions Gf Y(s) that describe the impact of a current pulse injected
in compartment v on the membrane potential of compartment pt. The solution is of the
form

=% Clv /0 TGEY () [ (1 —5)— 8Vt —5)] ds. (6.46)

Explicit expressions for the Green’s function Gf v(s) for arbitrary geometry have been
derived by Abbott et al. (1991) and Bressloff and Taylor (1994).
We consider a network made up of a set of neurons described by Eq. (6.45) and a simple

threshold criterion for generating spikes. We assume that each spike tf of a presynaptic

J
neuron j evokes, for t > t{ , a synaptic current pulse o(t — t{ ) into the postsynaptic neuron
i. The actual amplitude of the current pulse depends on the strength W;; of the synapse that
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connects neuron j to neuron i. The total input to compartment ( of neuron i is thus

=Y W Za (t—1t]). (6.47)

jel"“

Here, FlH denotes the set of all neurons that have a synapse with compartment y of neuron
i. The firing times of neuron j are denoted by t{ .

In the following we assume that spikes are generated at the soma in the manner of
the integrate-and-fire model. That is to say, a spike is triggered as soon as the somatic
membrane potential reaches the firing threshold, . After each spike the somatic membrane
potential is reset to V' = u, < ©. This is equivalent to a current pulse

%(s) =Cl (O —uy)8(s), (6.48)

so that the overall current due to the firing of action potentials at the soma of neuron i
amounts to

=S nt—t). (6.49)
7

We will refer to Eqgs. (6.46)—(6.49) together with the threshold criterion for generating
spikes as the multi-compartment integrate-and-fire model.

Using the above specializations for the synaptic input current and the somatic reset cur-
rent the membrane potential (6.46) of compartment U in neuron i can be rewritten as

Zn, (t—1 +ZZW,,25‘” tf) (6.50)

v jery
with
e (s) = Cll‘/ /()wcf‘v(s’)a(s—s’)ds’, (6.51)
nt(s) = Cl} /Owa‘(s’)%(s—s’)ds’. (6.52)

The kernel si“ Y(s) describes the effect of a presynaptic action potential arriving at com-
partment v on the membrane potential of compartment (. Similarly, ni” (s) describes the
response of compartment (I to an action potential generated at the soma.

The triggering of action potentials depends on the somatic membrane potential only. We
define u; = V!, m;(s) = n/ (s) and, for j € T, we set &; = &!"V. This yields the equation of

the SRM
an t—tf ZWUZ&/ t—tf (6.53)

Example: Two-compartment integrate-and-fire model

We illustrate the methodology by mapping a simple model with two compartments
and a reset mechanism at the soma (Rospars and Lansky, 1993) to the Spike Response
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Fig. 6.15 Two-compartment integrate-and-fire model. (a) Response kernel 1o (s) of a neuron with
two compartments and a fire-and-reset threshold dynamics. The response kernel is a double expo-
nential with time constants 7o = 2ms and 7y = 10 ms. The spike at s = 0 is indicated by a vertical
arrow. (b) Response kernel g(s) for excitatory synaptic input at the dendritic compartment with a
synaptic time constant T, = 1 ms. The response kernel is a superposition of three exponentials and
exhibits the typical time course of an excitatory postsynaptic potential.

Model. The two compartments are characterized by a somatic capacitance C' and a
dendritic capacitance C?> = aC'. The membrane time constant is ) = R' C! = R C? and
the longitudinal time constant 71, = r'>C! C?/(C' +C?). The neuron fires if V(1) = 1.
After each firing the somatic potential is reset to u,. This is equivalent to a current pulse

¥(s) =q8(s), (6.54)

where ¢ = C! [ — u,] is the charge lost during the spike. The dendrite receives spike
trains from other neurons j and we assume that each spike evokes a current pulse with
time course

1

os) = —exp (S) o(s). (6.55)

Ts Ts
For the two-compartment model it is straightforward to integrate the equations and
derive the Green’s function. With the Green’s function we can calculate the response
kernels no(s) = n") and &y(s) = £!2 as defined in Eqs. (6.51) and (6.52). We find

i

O —u, S s
No(s) = — (+a) exp <_To> [1 +aexp <_T12>} , (6.56)

e(s) = ! ex 2 7176_5” ex = 7176_(%
U= (1+Cl) p T0 T, 01 P T12 T, 02

with 8 = 7;' — 7, ' and & =7, ! — 7, ' — 1., Figure 6.15 shows the two response
kernels with parameters 7o = 10 ms, 7j2 = 2 ms, and a = 10. The synaptic time constant
is 7, = 1 ms. The kernel &(s) describes the voltage response of the soma to an input at
the dendrite. It shows the typical time course of an excitatory or inhibitory postsynaptic
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potential. The time course of the kernel 1y(s) is a double exponential and reflects the
dynamics of the reset in a two-compartment model.

6.5 Summary

By adding one or several adaptation variables to integrate-and-fire models, a large variety
of firing patterns found in real neurons, such as adaptation, bursting or initial bursting,
can be explained. The dynamics of the adaptation variables has two components: (i) a
coupling to the voltage u via a parameter a which provides subthreshold adaptation and,
in nonlinear neuron models, also a contribution to spike-triggered adaptation; and (ii) an
explicit spike-triggered adaptation via an increase of the adaptation current during each
firing by an amount b. While positive values for a and b induce a hyperpolarization of the
membrane and therefore lead to spike-frequency adaptation, negative values induce a depo-
larization and lead to delayed onset of spiking and spike frequency facilitation. Bursting is
most easily achieved by a suitable combination of the reset parameters u, and b.

The phenomenological adaptation variables wy can be derived from the ionic currents
flowing through different ion channels. Coupling of an integrate-and-fire model to a pas-
sive dendrite also yields effective adaptation variables which have, however, a facilitating
influence.

The adaptation variables can be combined with a quadratic integrate-and-fire model
which leads to the Izhikevich model; with an exponential integrate-and-fire model which
leads to the AdEx model; or with a leaky integrate-and-fire model. In the latter case, the dif-
ferential equations can be analytically integrated in the presence of an arbitrary number of
adaptation variable. Integration leads to the Spike Response Model (SRM) which presents
a general linear model combined with a sharp firing threshold. The Spike Response Model
is the starting point for the Generalized Linear Models in the presence of noise which we
will introduce in Chapter 9.

Literature

Formal neuron models where spikes are triggered by a threshold process were popular in
the 1960s (Stein, 1965, 1967b; Geisler and Goldberg, 1966; Weiss, 1966), but the ideas
can be traced back much earlier (Lapicque, 1907; Hill, 1936). It was recognized early
that these models lend themselves for hardware implementations (French and Stein, 1970)
and mathematical analysis (Stein, 1965, 1967a), and can be fitted to experimental data
(Brillinger, 1988, 1992).

Dynamic thresholds that increase after each spike have been a standard feature of phe-
nomenological neuron models for a long time (Fuortes and Mantegazzini, 1962; Geisler
and Goldberg, 1966; Weiss, 1966) and so have the slow subthreshold processes of adap-
tation (Sabah and Leibovic, 1969; Mauro et al., 1970; Fishman et al., 1977; Sirovich
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and Knight, 1977). While the linear subthreshold coupling of voltage and adaptation cur-
rents via a coupling parameter a is nicely presented and analyzed in Richardson et al.
(2003), the spike-triggered jump b of the adaptation current has been mainly popularized by
Izhikevich (2003) — but can be found in earlier papers (e.g., Gerstner et al., 1996b; Liu and
Wang, 2001), and much earlier in the form of a spike-triggered increase in the threshold
(Fuortes and Mantegazzini, 1962; Geisler and Goldberg, 1966; Weiss, 1966).

The phase plane analysis of the AJEx model presented in this chapter is based on Naud
et al. (2008). The main difference between the AdEx model (Brette and Gerstner, 2005)
and the highly influential model of Izhikevich (2003) is that the AdEx uses in the voltage
equation an exponential nonlinearity (as suggested by experiments (Badel et al., 2008a))
whereas the Izhikevich model uses a quadratic nonlinearity (as suggested by bifurcation
analysis close to the bifurcation point (Ermentrout, 1996)).

The book by Izhikevich (2007a) as well as the Scholarpedia articles on the Spike
Response Model (SRM) and the adaptive exponential integrate-and-fire (AdEx) model
(Gerstner, 2008; Gerstner and Brette, 2009), present readable reviews of the model class
discussed in this chapter.

The functions 7, k, and g;; are response kernels that describe the effect of spike emis-
sion and spike reception on the variable ;. This interpretation has motivated the name
“Spike Response Model.” While the name and the specific formulation of the model equa-
tions (6.27)—(6.30) has been used since 1995 (Gerstner, 1995; Gerstner et al., 1996b;
Kistler et al., 1997), closely related models can be found in earlier works; see, e.g., Hill
(1936); Geisler and Goldberg (1966).

Exercises

1. Time scale of firing rate decay. The characteristic feature of adaptation is that, after the onset
of a superthreshold step current, interspike intervals become successively longer, or, equivalently,
the momentary firing rate drops. The aim is to make a quantitative prediction of the decay of the
firing rate of a leaky integrate-and-fire model with a single adaptation current.

(a) Show that the firing rate of Eqs. (6.7) and (6.8) with constant I, constant w and a =0 is

-1
fw)=- |:Tm10g (17%)} : (6.57)

(b) For each spike (i.e., once per interspike interval), w jumps by an amount b. Show that for I
constant and w averaged over one interspike interval, Eq. (6.8) becomes:

d
rwdl: = —wbT, f(I,W). (6.58)

(c) At time ty, a strong current of amplitude Iy is switched on that causes transiently a firing rate
f > 1,,. Afterward the firing rate decays. Find the effective time constant of the firing rate for the
case of strong input current.
Hint: Start from Eq. (6.58) and consider a Taylor expansion of f(I,w).
2. Subthreshold resonance. We study a leaky integrate-and-fire model with a single adaptation
variable w.
(a) Assume Ey = ureqt and cast equation Eqs. (6.7) and (6.8) in the form of Eq. (6.27). Set
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€ =0 and calculate 1 and x. Show that k(t) can be written as a linear combination x(t) =
ket +k_er with

1
Ay = T (—(rm +T0) £V T+ T — 4T T (1 +aR)) (6.59)
and
L R(Aitet)
T A o5

(b) What are the parameters of Eqs. (6.7)—(6.8) that lead to oscillations in k(t)?
(c) What is the frequency of the oscillation?

Hint: Section 4.4.3.
(d) Take the Fourier transform of Egs. (6.7)—(6.8) and find the function R(®) that relates the
current [(w) at frequency o to the voltage ii(®) at the same frequency, ie., i(®) = R(w) (o).
Show that, in the case where x has oscillations, the function R(®) has a global maximum. What
is the frequency where this happens?
. Integrate-and-fire model with slow adaptation.
The aim is to relate the leaky integrate-and-fire model with a single adaptation variable, defined
in Egs. (6.7) and (6.8), to the Spike Response Model in the form of Eq. (6.27). Adaptation is
slow so that Ty, /T, = 8 < 1 and all calculations can be done to first order in §.
(a) Show that the spike-afterpotential is given by

n(t) = net’ +pet, ©.61)
=Au(1-—6—-68a)—b(1+59), (6.62)
v=Au—1y. (6.63)

(b) Derive the input response kernel x(s).
Hint: Use the result from (a).
. Integrate-and-fire model with time-dependent time constant. Since many channels are open
immediately after a spike, the effective membrane time constant after a spike is smaller than
the time constant at rest. Consider an integrate-and-fire model with spike-time-dependent time
constant, i.e., with a membrane time constant T that is a function of the time since the last post-
synaptic spike,
du u 1

. _ - ext .
i T(tff)_‘_cl (t); (6.64)

see Wehmeier et al. (1989); Stevens and Zador (1998). As usual, f denotes the last firing time of
the neuron. The neuron fires if u(t) hits a fixed threshold ¥ and integration restarts with a reset
value u,.

(a) Suppose that the time constant is T(t —f) = 2ms for t —f < 10ms and ©(t —f) = 20ms for
t —1 > 10ms. Set u, = —10mV. Sketch the time course of the membrane potential for an input
current I(t) = q8(t —t") arriving att’ = 5ms ort’ = 15ms. What are the differences between the
two cases?

(b) Integrate Eq. (6.64) for arbitrary input with u(f) = u, as initial condition and interpret the
result.
. Spike-triggered adaptation currents. Consider a leaky integrate-and-fire model. A spike at time
t generates several adaptation currents dwy,/dt = fv_‘;—: +b8(t—t)) withk=1,... K.

(a) Calculate the effect of the adaptation current on the voltage.

(b) Construct a combination of spike-triggered currents that could generate slow adaptation.

(c) Construct a combination of spike-triggered currents that could generate bursts.



7

Variability of spike trains and neural codes

The neuron models discussed in the previous chapters are deterministic and generate, for
most choices of parameters, spike trains that look regular when driven by a constant stimu-
lus. In vivo recordings of neuronal activity, however, are characterized by a high degree of
irregularity. The spike train of an individual neuron is far from being periodic, and correla-
tions between the spike timings of neighboring neurons are weak. If the electrical activity
picked up by an extracellular electrode is made audible by a loudspeaker then what we
basically hear is noise. The question whether this is indeed just noise or rather a highly
efficient way of coding information cannot easily be answered. Indeed, listening to a com-
puter modem or a fax machine might also leave the impression that this is just noise. Being
able to decide whether we are witnessing the neuronal activity that is underlying the com-
position of a poem (or the electronic transmission of a love letter) and not just meaningless
flicker is one of the most burning problems in neuroscience.

Several experiments have been undertaken to tackle this problem. It seems that a neuron
in vitro, once it is isolated from the network, can react in a very reliable and reproducible
manner to a fluctuating input current, and so can neurons in the sensory cortex in vivo
when driven by a strong time-dependent signal. On the other hand, neurons produce irreg-
ular spike trains in the absence of any temporally structured stimuli. Irregular spontaneous
activity, i.e., activity that is not related in any obvious way to external stimulation, and
trial-to-trial variations in neuronal responses are often considered as noise.

The origin of this irregularity of neuronal dynamics in vivo is poorly understood. In
integrate-and-fire models, noise is therefore often added explicitly to neuronal dynamics so
as to mimic the unpredictability of neuronal recordings. How to add noise to neuron models
is the topic of Chapters 8 and 9. The aim of the present chapter is a mere description and
quantification of the variability of neuronal spike trains. We review in Section 7.1 some
experimental evidence for noise in neurons and introduce in Sections 7.2-7.5 a statistical
framework of spike-train analysis. In particular, we present the definitions of firing rate,
interval distribution, power spectrum, and renewal statistics. In Section 7.6 we ask whether
the firing rate, which is such a useful measure for quantification of spike trains, can also be
considered as the code used by neurons in the brain.
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Fig. 7.1 Spontaneous activity in vivo. Sample of a voltage trace (whole-cell recording) of a cortical
neuron when the animal receives no experimental stimulation. The neuron is from layer 2/3 of the C2
cortical column, a region of the cortex associated with whisker movement. The recording corresponds
to a period of time where the mouse is awake and freely whisking. Data courtesy of Sylvain Crochet
and Carl Petersen (Crochet et al., 2011).

7.1 Spike-train variability

If neuron models such as the Hodgkin—Huxley or the integrate-and-fire model are driven
by a sufficiently strong constant current, they generate a regular sequence of spikes. In
neuronal models with adaptation currents! there might be a short transient phase at the
beginning, but then all interspike intervals are constant. Spike trains of typical neurons in
vivo show much more irregular behavior. Whether the irregularity is the sign of thermal
noise, microscopic chaos, or rather the signature of an intricate neural code is at present
an open question. In the first subsection we review some evidence for neuronal variability
and spike-train irregularity. We then discuss potential sources of noise.

7.1.1 Are neurons noisy?

Many in vivo experiments show noisy behavior of cortical neurons. The activity of neurons
from the visual cortex, for example, can be recorded while a slowly moving bar is presented
on a screen within the visual field of the animal. As soon as the bar enters the neuron’s
receptive field the firing rate goes up. The spike train, however, varies considerably from
trial to trial, if the same experiment is repeated several times. Similarly, neurons in a region
of the sensory cortex of rats or mice respond systematically to whisker movements, but the
response is somewhat different between one trial and the next. Furthermore, the very same
neuron occasionally emits a spontaneous spike, even if no external stimulus is applied.
During spontaneous activity, the voltage trajectory fluctuates considerably and intervals
between one spike and the next exhibit a large degree of variability (Fig. 7.1).

Are these experiments convincing evidence for ubiquitous noise in the central nervous
system? The above observations refer to experiments on the neural system as a whole.
The cortical neuron that is recorded from receives input not only from the sensors, but

'We neglect here intrinsically bursting and chaotic neurons.
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Fig. 7.2 Variability across four repetitions of the same stimulus in vitro. Sample voltage traces during
stimulation with a time-dependent current. Modified from Naud and Gerstner (2012b) with kind
permission from Springer Science and Business Media.

also from many other neurons in the brain. The effective input to this neuron is basically
unknown. It is thus possible that there is a substantial fluctuation in the input current to
cortical neurons, even though the external (e.g., visual or tactile) stimulus is always the
same.

The advantage of experiments in vitro is that the stimulus injected into the neuron can
be well controlled. If the stimulation consists of a known time-dependent current directly
injected into the neuron, the neuronal response also varies from one trial to the next, even if
the very same stimulation is repeated several times (Fig. 7.2). Is this an indication of “real”
noise? The variability is visible only if the stimulating current is nearly constant (Fig. 7.3).
In fact, when neurons are driven by a current with large-amplitude fluctuations of the input
signal, neurons behave more or less deterministically (Bryant and Segundo, 1976; Mainen
and Sejnowski, 1995).

Similarly, in the full and intact brain, neurons react much more reliably to a rapidly
changing external stimulus than to constant or slowly moving stimuli. For example, spa-
tially uniform random flicker of an image elicits more or less the same spike train in retinal
ganglion cells if the same flicker sequence is presented again (Berry et al., 1997). A sim-
ilar behavior has been reported for motion-sensitive neurons of the visual system in flies
(de Ruyter van Steveninck et al., 1997) and monkey cortex (Bair and Koch, 1996); see Fig.
7.4 for an example of a cortical neuron. Whether a neuron behaves nearly deterministically
or rather randomly thus depends, at least to a certain extent, on the stimulus.

In the following, we distinguish between intrinsic noise sources that generate stochastic
behavior on the level of the neuronal dynamics and are present even in an isolated neuron
in vitro; and extrinsic sources that arise from network effects and synaptic transmission
naturally occurring in vivo.

7.1.2 Intrinsic noise sources

A source of noise which is literally omnipresent is thermal noise. Owing to the discrete
nature of electric charge carriers, the voltage u across any electrical resistor R fluctuates
at finite temperature (Johnson noise). The variance of the fluctuations at rest is (Au?) o



7.1 Spike-train variability 171

() (b) (c)
1 : 1.0
i 25 E{ ]
m H H *| Z 05 bt
e 5
= &
Bopls b sl b v h b 0.0
0 250 500 750 1000 0 1000 0 50 100
Time [ms] Time [ms] o[pA]

Fig. 7.3 Variability across repetitions of the same stimulus in vitro. (a) A constant stimulus leads to
a large variability of spike timing between one trial and the next. (b) A stimulus with large-amplitude
signal fluctuations generates reliable spike timing so that spike times vary across trials. (c) Reliability
of spike timing (arbitrary units) as a function of the amplitude ¢ of signal fluctuations. Modified from
Mainen and Sejnowski (1995) with permission from AAAS.

RkT B where k is the Boltzmann constant, T the temperature and B the bandwidth of the
system. Since neuronal dynamics is described by an equivalent electrical circuit containing
resistors (see Chapter 2), the neuronal membrane potential fluctuates as well. Fluctuations
due to Johnson noise are, however, of minor importance compared to other noise sources
in neurons (Manwani and Koch, 1999).

Another source of noise that is specific to neuronal cells and present already in an iso-
lated neuron arises from the finite number of ion channels in a patch of neuronal membrane.
Most ion channels have only two states: they are either open or closed. The electrical con-
ductivity of a patch of membrane for ion type i is proportional to the number of open ion
channels. For a given constant membrane potential u, a fraction P,(u) of ion channel of type
i is open on average. The actual number of open channels fluctuates around N; P;(u) where
N; is the total number of ion channels of type i in that patch of membrane; see Fig. 2.5.

The formulation of the Hodgkin—Huxley equations in terms of ion channel conductivities
(see Chapter 2) is implicitly based on the assumption of a large number of ion channels so
that fluctuations can be neglected. Since, in reality, N; is finite, the conductivity fluctuates
and so does the potential. If the membrane potential is close to the threshold, channel noise
can be critical for the generation of action potentials. Models that take the finite number
of ion channels into account can reproduce the observed variability of real neurons with
intracellular stimulation (Schneidman et al., 1998; Chow and White, 1996). In particular,
they show little spike jitter if the input current is rapidly changing, but are less reliable if
the input current is constant.

7.1.3 Noise from the network

Apart from intrinsic noise sources at the level of an individual neuron there are also sources
of noise that are due to signal transmission and network effects (extrinsic noise). Synaptic
transmission failures, for instance, seem to impose a substantial limitation to signal trans-
mission within a neuronal network. Experiments with double electrode recordings from
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Fig. 7.4 Variability across repetitions of the same stimulus in vivo. Activity of a neuron in visual
cortex (area MT) driven by a stimulus consisting of randomly moving dots. The same stimulus is
repeated many times. Spikes in a single trial are shown as short vertical dashes along a horizontal line.
Only 15 trials are shown. The peri-stimulus-time-histogram (accumulated over many more trials) is
indicated at the bottom. Redrawn after Bair and Koch (1996), who show data from the Newsome lab
(Newsome et al., 1989).

two synaptically connected neurons suggest that only 10-30% of presynaptic spikes gen-
erate a postsynaptic response (Hessler et al., 1993; Markram and Tsodyks, 1996).

Finally, an important part of the irregularity of neuronal spiking during spontaneous
activity seems to be due to properties of the network — even if the network itself is com-
pletely deterministic. Model studies show that networks of excitatory and inhibitory neu-
rons with fixed random connectivity can produce highly irregular spike trains — even in
the absence of any source of noise. An example of variability in a deterministic network
of leaky integrate-and-fire neurons with random excitatory and inhibitory interactions is
shown in Fig. 7.5. We will discuss the underlying mechanisms in Part III of this book
(see Sections 12.3.4 and 12.4.4). As a result of the network activity, each neuron receives
as input an irregular spike sequence that can be described as stochastic spike arrival; see
Chapter 8. The difference between the large variability of neurons in vivo compared to
the variability during intracellular stimulation in vitro can therefore be, at least partially,
attributed to network effects.

7.2 Mean firing rate

In the next few sections, we introduce some important concepts commonly used for the
statistical description of neuronal spike trains. Central notions will be the interspike inter-
val distribution (Section 7.3), the noise spectrum (Section 7.4), but most importantly the
concept of “firing rate,” which we discuss first.

A quick glance at the experimental literature reveals that there is no unique and well-
defined concept of “mean firing rate.” In fact, there are at least three different notions of
rate, which are often confused and used simultaneously. The three definitions refer to three
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Fig. 7.5 Variability in a deterministic model network of 8000 excitatory and 2000 inhibitory neurons,
both modeled as leaky integrate-and-fire neurons. (a) Voltage trace as a function of time for a single
model neuron. Spikes (vertical lines) are generated whenever the membrane potential (solid line)
hits the firing threshold. (b) Spike raster of 100 neurons in the network. Spike times (dots) of a single
neuron appear along a horizontal line. (C) Population activity A as a function of time 7, measured
by averaging across the spikes of the subpopulation of 100 neurons shown in (b). From time t = 1s
to t = 3's, all neurons in this population receive a nonzero input. (d) Input to the subpopulation of
100 neurons. Simulation results courtesy of F. Zenke and T. P. Vogels (Vogels et al., 2011).

different averaging procedures: an average over time, or an average over several repeti-
tions of the experiment, or an average over a population of neurons. The following three
subsections will revisit in detail these three concepts.

7.2.1 Rate as a spike count and Fano factor

The first and most commonly used definition of a firing rate refers to a temporal average.
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Fig. 7.6 The spike count measure: definition of
the mean firing rate by temporal average.

An experimenter observes in trial k the spikes of a given neuron (see Fig. 7.6). The firing
rate in trial & is the spike count #,” in an interval of duration 7 divided by T

sp

n
Vi = % (7.1)

The length T of the time window is set by the experimenter and depends on the type of
neuron and the stimulus. In practice, to get sensible averages, several spikes should occur
within the time window. Typical values are T = 100 ms or 7 = 500 ms, but the duration
may also be longer or shorter.

This definition of rate has been successfully used in many preparations, particularly in
experiments on sensory or motor systems. A classical example is the stretch receptor in
a muscle spindle (Adrian, 1926). The number of spikes emitted by the receptor neuron
increases with the force applied to the muscle.

If the same experiment is repeated several times, the measured spike count varies between
one trial and the next. Let us denote the spike count in trial k£ by the variable nzp, its mean
by (n*P) and deviations from the mean as An,” = n;” — (n°P). Variability of the spike count
measure is characterized by the Fano factor, defined as the variance of the spike count
{(An®?)?) divided by its mean

F = M (7.2)
(n°P)
In experiments, the mean and variance are estimated by averaging over K trials (n’P) =
(1/K)TE_, n? and ((An)2) = (1/K) 5K, (An?)2.

If we find on average (n°P) spikes in a long temporal window of duration T, the mean
interval between two subsequent spikes is 7' /(n*P). Indeed, using the notion of interspike-
interval distribution to be introduced below (Section 7.3), we can make the following state-
ment: the firing rate defined here as spike count divided by the measurement time 7T is
identical to the inverse of the mean interspike interval. We will come back to interspike
intervals in Section 7.3.

It is tempting, but misleading, to consider the inverse interspike interval as a “momen-
tary firing rate:” if a first spike occurs at time ¥ and the next one at time #**!, we could
artificially assign a variable ¥ (¢) = 1/(t**! —¢X) for all times * < ¢ < t*. However, the tem-
poral average of V() over a much longer time T is not the same as the mean rate v defined
here as spike count divided by T, simply because 1/(x) # {(1/x)). A practical definition
of “instantaneous firing rate” will be given below in Section 7.2.2.
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Example: Homogeneous Poisson process

If therate v is defined via a spike count over a time window of duration 7', the exact firing
time of a spike does not matter. It is therefore tempting to describe spiking as a Poisson
process where spikes occur independently and stochastically with a constant rate v.

Let us divide the duration 7 (say 500 ms) into a large number of short segments At
(say At = 0.1 ms). In a homogeneous Poisson process, the probability of finding a spike
in a short segment of duration Az is

Pr(t;t+At) = vAr. (7.3)

In other words, spike events are independent of each other and occur with a constant
rate (also called stochastic intensity) defined as

Pr(t;t+ At
W= i M

Ar—0 At 74

The expected number of spikes to occur in the measurement interval 7 is therefore
(n°Py=vT, (7.5)

so that the experimental procedure of (i) counting spikes over a time 7" and (ii) dividing
by T gives an empirical estimate of the rate v of the Poisson process.

For a Poisson process, the Fano factor is exactly 1. Therefore, measuring the Fano
factor is a powerful test so as to find out whether neuronal firing is Poisson-like; see the
discussion in Rieke et al. (1997).

7.2.2 Rate as a spike density and the peri-stimulus-time histogram

An experimenter records from a neuron while stimulating with some input sequence. The
same stimulation sequence is repeated several times and the neuronal response is reported
in a peri-stimulus-time histogram (PSTH) with bin width Af; see Fig. 7.7. The time ¢ is
measured with respect to the start of the stimulation sequence and Az defines the time bin
for generating the histogram, it is typically of the order of milliseconds.

The number of occurrences of spikes ng(7;¢ + At) summed over all repetitions of the
experiment divided by the number K of repetitions is a measure of the typical activity of
the neuron between time ¢ and ¢ 4 At. A further division by the interval length Af yields the
spike density

(1) = 1 ng (15t +Ar) .
At K
Sometimes the result is smoothed to get a continuous (time-dependent) rate variable, usu-
ally reported in units of hertz. As an experimental procedure, the PSTH measure is a useful
method to evaluate neuronal activity, in particular in the case of time-dependent stimuli;
see Fig. 7.4. We call it the time-dependent firing rate.

(7.6)



176 Variability of spike trains and neural codes

Rate = average over several runs
(single neuron, repeated runs)

Input | :

Ist run | [l | | | Spike density Fig. 7.7 The peri-stimulus-time

2nd | I | in PSTH histogram (PSTH) and the time-
p=-LL  (t+A)| dependent firing rate as an average

||| | ] At K K .

. over several runs of the experiment.

Pl [P A

In order to see the relation of Eq. (7.6) to a time-dependent firing rate, we recall that
spikes are formal events characterized by their firing time ¢/ where f counts the spikes. In
Chapter 1 we have defined (Eq. (1.14)) the spike train as a sum of §-functions:

St)=Y.8(t—t). (1.7
7

If each stimulation can be considered as an independent sample from the identical stochas-
tic process, we can define an instantaneous firing rate as an expectation over trials

V(1) = (S(1))- (7.8)

An expectation value over 6-functions may look strange to the reader not used to seeing
such mathematical objects. Let us therefore consider the experimental procedure to esti-
mate the expectation value. First, in each trial k, we count the number of spikes that occur
in a short time interval Az by integrating the spike train over time, n,’ (r) = SIS (¢ dr!
where the lower index k denotes the trial number. Note that integration removes the
o-function. Obviously, if the time bin Ar is small enough we will find at most one spike so
that n,S(p is either zero or 1. Second, we average over the K trials and divide by At in order
to obtain the empirical estimate

1 &,
v(t) = A Z‘lnk (1). (7.9)

The PSTH, defined as spike count per time bin averaged over several trials and divided by
the bin length (the right-hand side of Eq. (7.9)), provides therefore an empirical estimate
of the instantaneous firing rate (the left-hand side).

Example: Inhomogeneous Poisson process

An inhomogeneous Poisson process can be used to describe the spike density mea-
sured in a PSTH. In an inhomogeneous Poisson process, spike events are independent
of each other and occur with an instantaneous firing rate
. Pr(t;t+Ar)
m-———.

v(t)=li

7.1
Ar—0 At (7.10)
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Rate = average over pool of equivalent neurons
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Fig. 7.8 (a) A postsynaptic neuron receives spike input from the population m with activity A,,.
(b) The population activity is defined as the fraction of neurons that are active in a short interval
[t,1+ Ar] divided by Ar.

Therefore, the probability of finding a spike in a short segment of duration Az, say, a time
bin of 1 ms, is Pr(#;¢ + At) = v(z) Ar. More generally, the expected number of spikes in
an interval of finite duration 7 is (n*?) = [, v(r)dr and the Fano factor is 1, as was the
case for the homogeneous Poisson process.

Once we have measured a PSTH, we can always find an inhomogeneous Poisson
process which reproduces the PSTH. However, this does not imply that neuronal firing
is Poisson-like. A Poisson process has, for example, the tendency to generate spikes
with very short interspike intervals, which cannot occur for real neurons because of
refractoriness.

7.2.3 Rate as a population activity (average over several neurons)

The number of neurons in the brain is huge. Often many neurons have similar properties
and respond to the same stimuli. For example, neurons in the primary visual cortex of cats
and monkeys are arranged in columns of cells with similar properties (Hubel and Wiesel,
1962). Let us idealize the situation and consider a population of neurons with identical
properties. In particular, all neurons in the population should have the same pattern of
input and output connections. The spikes of the neurons in a population m are sent off to
another population n. In our idealized picture, each neuron in population n receives input
from all neurons in population m. The relevant quantity, from the point of view of the
receiving neuron, is the proportion of active neurons in the presynaptic population m; see
Fig. 7.8a. Formally, we define the population activity

A = L) 1 JNE %, 8 —1)de
At N At N ’

where N is the size of the population, nae(¢;¢ + Ar) is the number of spikes (summed over

all neurons in the population) that occur between ¢ and ¢ + Az, where At is a small time

(7.11)
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Fig. 7.9 Stationary interval distribution. (a) A neuron driven by a constant input produces spikes
with variable intervals. (b) A histogram of the interspike intervals sy, s;,... can be used to estimate
the interval distribution Py(s).

interval; see Fig. 7.8. Eq. (7.11) defines a variable with units inverse time — in other words,
arate.

As we can see from Fig. 7.5¢, the population activity may vary rapidly and can reflect
changes in the stimulus conditions nearly instantaneously. Before we discuss the problem
of neural coding (Section 7.6), let us first study further statistical measures of spike train
statistics.

7.3 Interval distribution and coefficient of variation

The estimation of interspike-interval (ISI) distributions from experimental data is a com-
mon method to study neuronal variability given a certain stationary input. In a typical
experiment, the spike train of a single neuron (e.g., a neuron in the visual cortex) is recorded
while driven by a constant stimulus. The stimulus might be an external input applied to the
system (e.g., a visual contrast grating moving at constant speed); or it may be an intra-
cellularly applied constant driving current. The spike train is analyzed and the distribution
of intervals s; between two subsequent spikes is plotted in a histogram. For a sufficiently
long spike train, the histogram provides a good estimate of the ISI distribution, which we
denote as Py(s); see Fig. 7.9. The interval distribution can be interpreted as a conditional
probability density

Py(s) = P(t/ +s)t7), (7.12)

where ftHA’ P(¢'|t/)dt’ is the probability that the next spike occurs in the interval [t, + Af]
given that the last spike occurred at time ¢/

In order to extract the mean firing rate from a stationary interval distribution Py(s), we
start with the definition of the mean interval,

(s) = '/OoosPo(s)ds. (7.13)

The mean firing rate is the inverse of the mean interval

-1

_ {/OmsPo(s)ds} . (7.14)

V=

1
(s)
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7.3.1 Coefficient of variation Cy

Interspike-interval distributions Py(s) derived from a spike train under stationary condi-
tions can be broad or sharply peaked. To quantify the width of the interval distribution,
neuroscientists often evaluate the coefficient of variation, Cy, defined as the ratio of the
standard deviation and the mean. Therefore the square of the Cy is
2 <A52>

Cy = Bk (7.15)
where (s) = [;"sPy(s)ds and (As?) = [;"s? Py(s)ds — (s)2. A Poisson process produces
distributions with Cy = 1. A value of Cy > 1 implies that a given spike train is less regular
than a Poisson process with the same firing rate. If Cy < 1, then the spike train is more
regular. Most deterministic integrate-and-fire neurons fire periodically when driven by a
constant stimulus and therefore have Cy = 0. Intrinsically bursting neurons, however, can
have Cy > 1.

Example: Poisson process with absolute refractoriness

We study a Poisson neuron with absolute refractory period A%, For times since the
last spike larger than A%, the neuron is supposed to fire stochastically with rate 7. The
interval distribution of a Poisson process with absolute refractoriness (Fig. 7.10a) is
given by

0 for s < A

Py(s) =
0(s) {rexp[—r(s—Aabs)] for s> A,

(7.16)
and has a mean (s) = A® 4 1 /r and variance (As?) = 1/r2. The coefficient of variation
is therefore

Aabs

(s)
Let us compare the Cy of Eq. (7.17) with that of a homogeneous Poisson process of the
same mean rate v = (s)~!. As we have seen, a Poisson process has Cy = 1. A refractory
period A?PS > () lowers the Cy, because a neuron with absolute refractoriness fires more
regularly than a Poisson neuron. If we increase A%, we must increase the instantaneous
rate r in order to keep the same mean rate v. In the limit of A®® — (s), the Cy approaches
zero, since the only possible spike train is regular firing with period (s).

Cy=1— (7.17)

7.4 Autocorrelation function and noise spectrum

Suppose that, during a stationary input scenario, we observe a neuron i firing a first spike
at time 7. While the interval distribution Py(s) describes the probability that the next spike
occurs at time ¢ + s, the autocorrelation function C(s) focuses on the probability of finding
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another spike at time ¢ + s — independent of whether this is the next spike of the neuron or
not.

In order to make the notion of an autocorrelation function more precise, let us consider a
spike train S;(¢) =¥ 8(t — 1, /) of length T'. The firing times t might have been measured
in an experiment or else generated by a neuron model. We suppose that T is sufficiently
long so that we can formally consider the limit 7 — . The autocorrelation function Cj;(s)
of the spike train is a measure for the probability of finding two spikes at a time interval s,
ie.,

Cii(s) = (S;(t) Si(t +5)):, (7.18)
where (-); denotes an average over time ¢,
T/2
0 [_EgT/;p (7.19)

We note that the right-hand side of Eq. (7.18) is symmetric so that Cj;(—s) = Cj;(s) holds.
The calculation of the autocorrelation function for a stationary renewal process is the topic
of Section 7.5.2.

It turns out that the autocorrelation function is intimately linked to the power spectrum
of a neuronal spike train, also called the noise spectrum. The power spectrum (or power
spectral density) of a spike train is defined as Z(w) = limy_,.. Z7(®), where Pr is the
power of a segment of length T of the spike train,

T/2 :
/ —la)l dt
' T/2
The power spectrum Z?(w) of a spike train is equal to the Fourier transform Cj;(@) of its

autocorrelation function (Wiener—Khinchin theorem). To see this, we use the definition of
the autocorrelation function

Ci(w) = /w (Si(t) Si(t +5))e @S ds

2
(7.20)

T/2 - _
~ lim & i@/1&0+ﬂ€mﬂmt
T—oo T -T/2 —oo
T/2 )
= lim — / +zwzdt/ S 7le ds/
T—eo T T/2
T/2
= lim — ’/ *‘“”dt (7.21)
T—eo T T/2

In the limit of T — oo, Eq. (7.20) becomes identical to (7.21) so that the assertion follows.
The power spectral density of a spike train during spontaneous activity is called the noise
spectrum of the neuron. Noise is a limiting factor to all forms of information transmission
and in particular to information transmission by neurons. An important concept of the
theory of signal transmission is the signal-to-noise ratio. A signal that is transmitted at a
certain frequency @ should be stronger than (or at least of the same order of magnitude
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as) the noise at the same frequency. For this reason, the noise spectrum Z(w) of the
transmission channel is of interest. As we shall see in the next section, the noise spectrum
of a stationary renewal process is intimately related to the interval distribution Py(s).

7.5 Renewal statistics

Poisson processes do not account for neuronal refractoriness and cannot be used to describe
realistic interspike-interval distributions. In order to account for neuronal refractoriness in
the stochastic description of spike trains, we need to switch from a Poisson processes to a
renewal process. Renewal processes keep a memory of the last event (last firing time) 7, but
not of any earlier events. More precisely, spikes are generated in a renewal process, with a
stochastic intensity (or “hazard”)

p(tf) = po(r — 1) (7.22)

which depends on the time since the last spike. One of the simplest example of a renewal
system is a Poisson process with absolute refractoriness which we have already encoun-
tered in the previous section; see Eq. (7.16).

Renewal processes are a class of stochastic point processes that describe a sequence of
events in time (Cox, 1962; Papoulis, 1991). Renewal systems in the narrow sense (sta-
tionary renewal processes), presuppose stationary input and are defined by the fact that the
state of the system, and hence the probability of generating the next event, depends only on
the “age” t — I of the system, i.e., the time that has passed since the last event (last spike).
The central assumption of renewal theory is that the state does not depend on earlier events
(i.e., earlier spikes of the same neuron). The aim of renewal theory is to predict the proba-
bility of the next event given the age of the system. In other words, renewal theory allows
us to calculate the interval distribution

Py(s) = P(t/ +st%), (7.23)

i.e., the probability density that the next event occurs at time #/ + s given that the last event
was observed at time ¢/

While for a Poisson process all events occur independently, in a renewal process gener-
ation of events (spikes) depends on the previous event, so that events are not independent.
However, since the dependence is restricted to the most recent event, intervals between
subsequent events are independent. Therefore, an efficient way of generating a spike train
of a renewal system is to draw interspike intervals from the distribution Py (s).

Example: Light bulb failure as a renewal system

A generic example of a renewal system is a light bulb. The event is the failure of the
bulb and its subsequent exchange. Obviously, the state of the system only depends on
the age of the current bulb, and not on that of any previous bulb that has already been
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exchanged. If the usage pattern of the bulbs is stationary (e.g., the bulb is switched on
for 10 hours each night) then we have a stationary renewal process. The aim of renewal
theory is to calculate the probability of the next failure given the age of the bulb.

7.5.1 Survivor function and hazard

The interval distribution P(¢|f) as defined above is a probability density. Thus, integration
of P(t|f) over time yields a probability. For example, [{ P(t'|f)dt’ is the probability that a
neuron which has emitted a spike at 7 fires the next action potential between 7 and . Thus

Sl =1- /t P i) dr’ (7.24)

is the probability that the neuron stays quiescent between 7 and . S(¢|f) is called the sur-
vivor function: it gives the probability that the neuron “survives” from 7 to ¢ without firing.

The survivor function S(z|f) has an initial value S(7|f) = 1 and decreases to zero for

t — oo, The rate of decay of S(¢|f) will be denoted by p(¢|f) and is defined by
i ~ ~
plufy — o ___PUD__, (7.29)
S(t)f) 1— [ P(¢'|F)dr

In the language of renewal theory, p(z|f) is called the “age-dependent death rate” or “haz-
ard” (Cox, 1962; Cox and Lewis, 1966).

Integration of the differential equation dS/dr = —p S [see the first identity in Eq. (7.25)]
yields the survivor function

S(t]f) = exp {— / "o(lD) dt’} . (7.26)

According to the definition of the survivor function in Eq. (7.24), the interval distribution
is given by

A d A A A
P(1lf) = =4 S(t1) = p () S(17) (7.27)

which has a nice intuitive interpretation: In order to emit its next spike at ¢, the neuron
has to survive the interval (f,¢) without firing and then fire at 7. The survival probability
is S(¢|f) and the hazard of firing a spike at time 7 is p(¢|f). Multiplication of the survivor
function S with the momentary hazard p gives the two factors on the right-hand side of
Eq. (7.27). Inserting Eq. (7.26) in (7.27), we obtain an explicit expression for the interval
distribution in terms of the hazard:

P(t)f) = p(1]F) exp [— /I t p(t'f)dt'] . (7.28)

On the other hand, given the interval distribution we can derive the hazard from Eq. (7.25).
Thus, each of the three quantities p(¢|7), P(¢|f), and S(z|f) is sufficient to describe the
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Fig. 7.10 Interval distribution Py(s) (top), survivor function Sy (s) (middle) for three different hazard
functions (bottom). (a) Hazard function corresponds to a Poisson neuron with absolute refractoriness
of 5 ms. (b) Hazard function defined by po(s) = ag (s — A®) ©(s — A®) with ag = 0.01ms~2 and
A®S — 2 ms. (c) Hazard function defined by po(s) = v{1 — exp[—A (s — A®%)]} ©(s — A?S) with
v =0.1kHz, 2 = 0.2kHz, and A* = 2ms.

statistical properties of a renewal system. Since we focus on stationary renewal systems,
the notation can be simplified and Eqs. (7.24)—(7.28) hold with the replacement

P(t|f) = Py(t — 1), (7.29)
S(t|f) = So(t — 1), (7.30)
p(t|f) = po(t —17). (7.31)

Eqgs. (7.24)—(7.28) are standard results of renewal theory. The notation that we have chosen
in Egs. (7.24)—(7.28) will turn out to be useful in later chapters and highlights the fact that
these quantities are conditional probabilities, probability densities, or rates.

Example: From interval distribution to hazard function

Let us suppose that we have found under stationary experimental conditions an inter-
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val distribution that can be approximated as

Ry(s) 0 for s < A®S (7.32)
S) = q abs .
0 ao (s — AS) o= T =A™ for g5 Adbs,

with a constant ag > 0; see Fig. 7.10b. From Eq. (7.25), the hazard is found to be

0 for s < A%S,

Pols) = { ap(s—A®S)  for s> AS, (7.33)

Thus, during an interval A after each spike the hazard vanishes. We may interpret
A?S a5 the absolute refractory time of the neuron. For s > A% the hazard increases
linearly, i.e., the longer the neuron waits the higher its probability of firing. In Chapter
9, the hazard of Eq. (7.33) can be interpreted as the instantaneous rate of a non-leaky
integrate-and-fire neuron subject to noise.

7.5.2 Renewal theory and experiments

Renewal theory is usually associated with stationary input conditions. The interval distribu-
tion Py can then be estimated experimentally from a single long spike train. The applicabil-
ity of renewal theory relies on the hypothesis that a memory back to the last spike suffices
to describe the spike statistics. In particular, there should be no correlation between one
interval and the next. In experiments, the renewal hypothesis can be tested by measuring
the correlation between subsequent intervals. Under some experimental conditions, corre-
lations are small, indicating that a description of spiking as a stationary renewal process
is a good approximation (Goldberg et al., 1964); however, under experimental conditions
where neuronal adaptation is strong, intervals are not independent (Fig. 7.11). Given a
time series of events with variable intervals s;, a common measure of memory effects is
the serial correlation coefficients

(sjk8)) i = (s7)3
(s3) = (s;)2

Spike-frequency adaptation causes a negative correlation between subsequent intervals

= (7.34)

(c1 < 0). Long intervals are most likely followed by short ones, and vice versa, so that
the assumption of renewal theory does not hold (Schwalger et al., 2010; Ratnam and Nel-
son, 2000; Chacron et al., 2000).

The notion of stationary input conditions is a mathematical concept that cannot be easily
translated into experiments. With intracellular recordings under in vitro conditions, con-
stant input current can be imposed and thus the renewal hypothesis can be tested directly.
Under in vivo conditions, the assumption that the input current to a neuron embedded in
a large neural system is constant (or has stationary statistics) is questionable; see (Perkel
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Fig. 7.11 Limitations of the renewal assumption. (a) The interval distribution Py(s) of an afferent
sensory fiber in the weakly electric fish exhibits periodic peaks, which are associated to the back-
ground oscillation normalized to period 7 = 1. The most likely interval is exactly one period, but
longer intervals are possible. (b) Testing for renewal in a plot of the joint density of the interval i
(horizontal axis) and the next interval i + 1 (vertical axis). Size of symbol indicates probability of
occurrence. The most likely sequence is that an interval of length 4 is followed by an interval of
length 1; moreover, a short interval of length 1 is most likely followed by a long interval of length 4.
Modified from Ratnam and Nelson (2000).

et al., 1967a,b) for a discussion. While the externally controlled stimulus can be made sta-
tionary (e.g., a grating drifting at constant speed), the input to an individual neuron is out
of control.

Let us suppose that, for a given experiment, we have checked that the renewal hypothesis
holds to a reasonable degree of accuracy. From the experimental interval distribution Py we
can then calculate the survivor function Sy and the hazard py via Eqs. (7.24) and (7.25). If
some additional assumptions regarding the nature of the noise are made, the form of the
hazard py(¢|f) can be interpreted in terms of neuronal dynamics. In particular, a reduced
hazard immediately after a spike is a signature of neuronal refractoriness (Goldberg et al.,
1964; Berry and Meister, 1998).

Example: Plausible hazard function and interval distributions

Interval distributions and hazard functions have been measured in many experiments.
For example, in auditory neurons of the cat driven by stationary stimuli, the hazard func-
tion po(r —7) increases, after an absolute refractory time, to a constant level (Goldberg
et al., 1964). We approximate the time course of the hazard function as

{ 0 for s< Aabs,

V[1—e 262" for 5> Adbs, (7.35)

Po(s) =

with parameters Aabs,l, and v; Fig. 7.10c. In Chapter 9 we shall see how the hazard
(7.35) can be related to neuronal dynamics. Given the hazard function, we can calculate
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the survivor function and interval distributions. Application of Eq. (7.26) yields

1 for s < A%,
= { e V(=A™ ePo(s)/A  for 5> ARbS, (7.36)

The interval distribution is given by Py(s) = po(s) So(s). Interval distribution, survivor
function, and hazard are shown in Fig. 7.10c.

We may compare the above hazard function and interval distribution with that of
the Poisson neuron with absolute refractoriness. The main difference is that the hazard
in Eq. (7.16) jumps from the state of absolute refractoriness to a constant firing rate,
whereas in Eq. (7.35) the transition is smooth.

7.5.3 Autocorrelation and noise spectrum of a renewal process (*)

In case of a stationary renewal process, the interval distribution Py contains all the statistical
information so that the autocorrelation function and noise spectrum can be derived. In this
section we calculate the noise spectrum of a stationary renewal process. As we have seen
above, the noise spectrum of a neuron is directly related to the autocorrelation function
of its spike train. Both noise spectrum and autocorrelation function are experimentally
accessible.

Let v; = (S;) denote the mean firing rate (expected number of spikes per unit time) of the
spike train. Thus the probability of finding a spike in a short segment [¢,# + Ar] of the spike
train is v Az. For large intervals s, firing at time ¢ + s is independent of whether or not there
was a spike at time ¢. Therefore, the expectation of finding a spike at ¢ and another spike at
t + s approaches for s — oo a limiting value limg_,..(S; () S;(¢ +5)) = lim;_,. Cii(s) = V2. Tt
18 convenient to subtract this baseline value and introduce a “normalized” autocorrelation,

C(s) = Ci(s) — V2, (7.37)
with lim_e. Cg(s) = 0. The Fourier transform of Eq. (7.37) yields
Ci(0) =Cw)+2nv? (o). (7.38)

Thus C’ii(a)) diverges at @ = 0; the divergence is removed by switching to the normalized
autocorrelation. In the following we will calculate the noise spectrum Cj;(®) for @ # 0.

In the case of a stationary renewal process, the autocorrelation function is closely related
to the interval distribution Py(s). This relation will now be derived. Let us suppose that we
have found a first spike at 7. To calculate the autocorrelation we need the probability density
for a spike at z +s. Let us construct an expression for Cj;(s) for s > 0. The correlation
function for positive s will be denoted by v;C (s) or

Ci(s) = —Ci(s)O(s). (7.39)
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Fig. 7.12 (a) The autocorrelation of a spike train describes the chance to find two spikes at a dis-
tance s, independent of the number of spikes that occur in between. (b) Fourier transform of the
autocorrelation function Cj; of a Poisson neuron with absolute refractoriness (A** = 5ms) and con-
stant stimulation (v = 100 Hz).

The factor v; in Eq. (7.39) takes care of the fact that we expect a first spike at ¢ with rate
vi; C1(s) gives the conditional probability density that, given a spike at 7, we will find
another spike at ¢ +s > ¢. The spike at # 4 s can be the first spike after ¢, or the second one,
or the nth one; see Fig. 7.12. Thus for s > 0

Ci(s)=PRy(s)+ /0oo Py(s')Py(s—s")ds
+ /Ow /pro(sl) Py(s")Py(s—s' —s")ds'ds” +--- (7.40)
or
Cy(s) = Pols) + /0 TR(s)Co (s — ) ds’ (7.41)

as can be seen by inserting Eq. (7.40) on the right-hand side of (7.41); see Fig. 7.13.

Owing to the symmetry of Cj;, we have Cj;(s) = v C4(—s) for s < 0. Finally, for s =0,
the autocorrelation has a & peak reflecting the trivial autocorrelation of each spike with
itself. Hence,

Cils) = Vi[8(s) + C1.(5) + Ci ()] (7.42)
In order to solve Eq. (7.41) for C; we take the Fourier transform of Eq. (7.41) and find

h(o)

) (7.43)

(o)

Together with the Fourier transform of Eq. (7.42), Ci; = v; [1 +2Re{C (®)}], we obtain

1+ﬁ0(0))

é,(a)) = V,‘Re{ 1 7ﬁ0(a))

} for w#0. (7.44)
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Fig. 7.13 The autocorrelation function (ACF) is a sum of interspike-interval distributions convolved
with itself (graphical representation of Eq. (7.40)). The interspike-interval distribtion (Py(s), thick
line) is added sequentially to self-convolutions such as [;” Py(s")Py(s — s")ds” (dashed lines). The
partial sums (solid lines) gradually converge to the autocorrelation function (C4(s), dotted line).

For @ = 0, the Fourier integral over the right-hand side of Eq. (7.40) diverges, since
Jo Po(s)ds = 1. If we add the diverging term from Eq. (7.38), we arrive at

Cito) =wre { {2 o v50). (1.45)
l—P()((D)

This is a standard result of stationary renewal theory (Cox and Lewis, 1966) which has
been repeatedly applied to neuronal spike trains (Edwards and Wakefield, 1993; Bair et al.,
1994).

Example: Stationary Poisson process

In Sections 7.2.1 and 7.5 we have already discussed the Poisson neuron from the
perspective of mean firing rate and renewal theory, respectively. The autocorrelation of
a Poisson process is

Cii(s) = v&(s) + V2. (7.46)

We want to show that Eq. (7.46) follows from Eq. (7.40).

Since the interval distribution of a Poisson process is exponential [see Eq. (7.16) with
A% = 0], we can evaluate the integrals on the right-hand side of Eq. (7.40) in a straight-
forward manner. The result is

c+(s):ve*”[1+vs+%(vs)2+--~] =v. (7.47)

Hence, with Eq. (7.42), we obtain the autocorrelation function (7.46) of a homogeneous
Poisson process. The Fourier transform of Eq. (7.46) yields a flat spectrum with a 0 peak
at zero:

Ci(w) =v+2mv?§(w). (7.48)

The result could have also been obtained by evaluating Eq. (7.45).
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Example: Poisson process with absolute refractoriness

We return to the Poisson process with absolute refractoriness defined in Eq. (7.16).
Apart from an absolute refractory time A%, the neuron fires with rate r. For @ # 0,
Eq. (7.45) yields the noise spectrum

2 —1
Ci(®) = v {1+2Z)2 [1 — cos(@A™)] +2% sin(a)AabS)} : (7.49)

see Fig. 7.12b. In contrast to the stationary Poisson process Eq. (7.46), the noise spec-
trum of a neuron with absolute refractoriness A% > 0 is no longer flat. In particular,
for @ — 0, the noise spectrum is decreased by a factor [1 +2(vA%S) 4 (v A#$)2]~1,
Eq. (7.49) and generalizations thereof have been used to fit the power spectrum of, e.g.,
auditory neurons (Edwards and Wakefield, 1993) and MT (middle temporal) neurons
(Bair et al., 1994).

Can we understand the decrease in the noise spectrum for @ — 0? The mean interval
of a Poisson neuron with absolute refractoriness is (s) = A% 4 r~!. Hence the mean
firing rate is

r

vV
1+ A2bs -

(7.50)

For A = () we retrieve the stationary Poisson process Eq. (7.3) with v = r. For finite
A the firing is more regular than that of a Poisson process with the same mean rate v.
We note that, for finite A2S > 0, the mean firing rate remains bounded even if r — oo.
The neuron then fires regularly with period A%, Because the spike train of a neuron with
refractoriness is more regular than that of a Poisson neuron with the same mean rate, the
spike count over a long interval, and hence the spectrum for @ — 0, is less noisy. This
means that Poisson neurons with absolute refractoriness can transmit slow signals more
reliably than a simple Poisson process.

7.5.4 Input-dependent renewal theory (*)

It is possible to use the renewal concept in a broader sense and define a renewal process as
a system where the state at time ¢ (and hence the probability of generating an event at ¢),
depends both on the time that has passed since the last event (i.e., the firing time f) and the
input I(¢'), f <t <t, that the system received since the last event. Input-dependent renewal
systems are also called modulated renewal processes (Reich et al., 1998), non-stationary
renewal systems (Gerstner, 1995, 2000), or inhomogeneous Markov interval processes
(Kass and Ventura, 2001). The aim of a theory of input-dependent renewal systems is to
predict the probability density

Py (tf) (7.51)
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Fig. 7.14 Input-dependent interval distribution. (a) A neuron, stimulated by the current /(¢) has emit-
ted a first spike at 7. (b) The interval distribution P;(¢|f) gives the probability density that the next
spike occurs after an interval ¢ — 7.

of the next event to occur at time ¢, given the timing 7 of the last event and the input I(¢")
for 7 < t’ <t; see Fig. 7.14. The relation between hazard, survivor function, and interval
distribution for the input-dependent case is the same as the one given in Eqs. (7.25)-
(7.28). The generalization to a time-dependent renewal theory will be useful later on, in
Chapter 9.

The lower index I of P;(z|f) is intended to remind the reader that the probability density
Py (t|f) depends on the time course of the input I(¢') for ¢’ < z. Since P;(¢|f) is conditioned
on the spike at 7, it can be called a spike-triggered spike density. We interpret F;(z|7) as
the distribution of interspike intervals in the presence of an input current / or as the input-
dependent interval distribution. For stationary input, P;(z|f) reduces to Py(t — 7).

7.6 The problem of neural coding

We have discussed in the preceding sections measures to quantify neural spike train data.
This includes measures of interval distribution, autocorrelation, noise spectrum, but also
simple measures such as the firing rate. All of these measures are useful tools for an experi-
menter who plans to study a neural system. A completely different question, however, is
whether neurons transmit information by using any of these quantities as a neural code.

In this section we critically review the notion of rate codes, and contrast rate coding
schemes with spike codes.

7.6.1 Limits of rate codes

The successful application of rate concepts to neural data does not necessarily imply that
the neuron itself uses a rate code. Let us look at the limitations of the spike count measure
and the PSTH.

Limitations of the spike count code

An experimenter as an external observer can evaluate and classify neuronal firing by a
spike count measure — but is this really the code used by neurons in the brain? In other
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words, is a cortical neuron which receives signals from a sensory neuron only looking at
and reacting to the number of spikes it receives in a time window of, say, 500 ms? We will
approach this question from a modeling point of view later on in the book. Here we discuss
some critical experimental evidence.

From behavioral experiments it is known that reaction times are often rather short. A fly
can react to new stimuli and change the direction of flight within 30-40 ms; see the discus-
sion in (Rieke ez al., 1997). This is not long enough for counting spikes and averaging over
some long time window. The fly has to respond after a postsynaptic neuron has received
one or two spikes. Humans can recognize visual scenes in just a few hundred milliseconds
(Thorpe et al., 1996), even though recognition is believed to involve several processing
steps. Again, this does not leave enough time to perform temporal averages on each level.

From the point of view of rate coding, spikes are just a convenient way to transmit the
analog output variable v over long distances. In fact, the best coding scheme to transmit the
value of the rate v would be by a regular spike train with intervals 1/v. In this case, the rate
could be reliably measured after only two spikes. From the point of view of rate coding,
the irregularities encountered in real spike trains of neurons in the cortex must therefore be
considered as noise. In order to get rid of the noise and arrive at a reliable estimate of the
rate, the experimenter has to average over a larger number of spikes.

Temporal averaging can work well in cases where the stimulus is constant or slowly
varying and does not require a fast reaction of the organism — and this is the situation
encountered in many experimental protocols. Real-world input, however, is rarely station-
ary, but often changing on a fast time scale. For example, even when viewing a static image,
humans perform saccades, rapid changes of the direction of gaze. The image projected onto
the retinal photo receptors changes therefore every few hundred milliseconds — and with
each new image the retinal photo receptors change the response (Fig. 7.16c). Since, in a
changing environment, a postsynaptic neuron does not have the time to perform a temporal
average over many (noisy) spikes, we consider next whether the PSTH could be used by a
neuron to estimate a time-dependent firing rate.

Limitations of the PSTH

The obvious problem with the PSTH is that it needs several trials to build up. Therefore
it cannot be the decoding scheme used by neurons in the brain. Consider, for example, a
frog that wants to catch a fly. It cannot wait for the insect to fly repeatedly along exactly
the same trajectory. The frog has to base its decision on a single run — each fly and each
trajectory is different.

Nevertheless, the PSTH measure of the instantaneous firing rate can make sense if there
are large populations of similar neurons that receive the same stimulus. Instead of recording
from a population of N neurons in a single run, it is experimentally easier to record from
a single neuron and average over N repeated runs. Thus, a neural code based on the PSTH
relies on the implicit assumption that there are always populations of neurons with similar
properties.
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| Fig. 7.15 Time-to-first-spike. The spike train
of three neurons are shown. The third neuron
from the top is the first one to fire a spike
————————————— after the stimulus onset (arrow). The dashed
line indicates the time course of the stimulus.

Limitations of rate as a population average

A potential difficulty with the definition (7.11) of the firing rate as an average over a popu-
lation of neurons is that we have formally required a homogeneous population of neurons
with identical connections, which is hardly realistic. Real populations will always have a
certain degree of heterogeneity both in their internal parameters and in their connectivity
pattern. Nevertheless, rate as a population activity (of suitably defined pools of neurons)
may be a useful coding principle in many areas of the brain.

For inhomogeneous populations, the definition (7.11) may be replaced by a weighted
average over the population. To give an example of a weighted average in an inhomoge-
neous population, we suppose that we are studying a population of neurons which respond
to a stimulus x. We may think of x as the location of the stimulus in input space. Neuron i
responds best to stimulus x;, another neuron j responds best to stimulus x ;. In other words,
we may say that the spikes of a neuron i “represent” an input vector x; and those of j an
input vector x ;. In a large population, many neurons will be active simultaneously when a
new stimulus x is represented. The location of this stimulus can then be estimated from the
weighted population average

SIS S8 —1l)dt
SN s, 8t —t])de

Both numerator and denominator are closely related to the population activity (7.11).
The estimate (7.52) has been successfully used for an interpretation of neuronal activ-
ity in primate motor cortex (Georgopoulos et al., 1986) and hippocampus (Wilson and
McNaughton, 1993). It is, however, not completely clear whether postsynaptic neurons
really evaluate the fraction (7.52) — a potential problem for a neuronal coding and decod-
ing scheme lies in the normalization by division.

x*(t) = (7.52)

7.6.2 Candidate temporal codes

Rate coding in the sense of a population average is one of many candidate coding schemes
that could be implemented and used by neurons in the brain. In this section, we introduce
some potential coding strategies based on spike timing.



7.6 The problem of neural coding 193

(b)
Neuron 1 Neuron 2
S U
+ o+

(a)

(©)

Normal axis (N)

30

|
w
S

Relative latency [ms]

Fig. 7.16 Time-to-first-spike. (a) Touching the finger tip with a sharp object can be quantified by a
force vector with total strength in the normal direction (N), possibly superimposed with a tangential
component in one of four possible directions (P, U, D, R). (b) Spike response to onset of touch force
in the five possible direction (P, U, D, R, N). Different stimuli yield different spike latencies which are
consistent across the five repetitions. Different neurons have different response patterns (two selected
neurons are shown). The location where stimulation yields maximal response is shown with a filled
circle. (c) (Top) Presentation of an image on the retina. The grid of recording electrodes is indicated
by dots. (Bottom) The latency of the first spike detected at each electrode reflects the original image.
Each pixel corresponds to one recorded neuron. (a) and (b) modified from Johansson and Birznieks
(2004), (c) is modified from Gollisch and Meister (2008) with permission from AAAS.

Time-to-first-spike: latency code

Let us study a neuron which abruptly receives a new constant input at time #y. For example,
a neuron might be driven by an external stimulus which is suddenly switched on at time
to. This seems to be somewhat artificial, but even in a realistic situation abrupt changes in
the input are quite common. When we look at a picture, our gaze jumps from one point to
the next. After each saccade, the photo receptors in the retina receive a new visual input.
Information about the onset of a saccades should easily be available in the brain and could
serve as an internal reference signal. We can then imagine a code where for each neuron
the timing of the first spike after the reference signal contains all information about the
new stimulus. A neuron which fires shortly after the reference signal is interpreted as a
strong stimulation of this neuron, whereas firing somewhat later would signal a weaker
stimulation; see Fig. 7.15.

In a pure version of this coding scheme, each neuron needs to fire only a single spike
to transmit information. If it emits several spikes, only the first spike after the reference
signal counts. All following spikes would be irrelevant. To implement a clean version of
such a coding scheme, we imagine that each neuron is shut off by inhibition as soon as it
has fired a spike. Inhibition ends with the onset of the next stimulus (e.g., after the next
saccade). After the release from inhibition the neuron is ready to emit its next spike, which
now transmits information about the new stimulus. Since each neuron in such a scenario
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Fig. 7.17 Phase and synchrony. (a) Phase coding: the neurons fire at different phases with respect
to the background oscillation (dashed). The phase could code relevant information. (b) Coding by
synchrony: the upper four neurons are nearly synchronous: two other neurons at the bottom are not
synchronized with the others.

transmits exactly one spike per stimulus, it is clear that only the timing conveys information
and not the number of spikes.

Experimental evidence indicates that a coding scheme based on the latency of the first
spike transmit a large amount of information. For example, touch sensors in the finger tip
encode the strength and direction of the touch in the timing of the first spike emitted by
each neuron (Fig. 7.16). Similarly, the relative latency of first spikes of retinal neurons
encode the image projected on the retina (Fig. 7.16c¢). In a slightly different context coding
by first spikes has been discussed by Thorpe et al. (1996). Thorpe argues that the brain
does not have time to evaluate more than one spike from each neuron per processing step.
Therefore the first spike should contain most of the relevant information, which is read out
by neurons further down the processing chain. Using information-theoretic measures on
their experimental data, several groups have shown that most of the information about a
new stimulus is indeed conveyed during the first 20 or 50 milliseconds after the onset of
the neuronal response (Optican and Richmond, 1987; Tovee and Rolls, 1995).

Phase

We can apply a code by “time to first spike” also in the situation where the reference signal
is not a single event, but a periodic signal. In the hippocampus, in the olfactory system, and
also in other areas of the brain, oscillations of some global variable (for example the pop-
ulation activity) are quite common. These oscillations could serve as an internal reference
signal. Neuronal spike trains could then encode information in the phase of a pulse with
respect to the background oscillation. If the input does not change between one cycle and
the next, then the same pattern of phases repeats periodically; see Fig. 7.17a.

The concept of coding by phases has been studied by several different groups. There is,
for example, evidence that the phase of a spike during an oscillation in the hippocampus
of the rat conveys information on the spatial location of the animal which is not fully
accounted for by the firing rate of the neuron (O’Keefe and Recce, 1993).
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Correlations and synchrony

We can also use spikes from other neurons as the reference signal for a spike code. For
example, synchrony of a pair or of many neurons could signify special events and convey
information which is not contained in the firing rate of the neurons; see Fig. 7.17b. One
famous idea is that synchrony could mean “belonging together.” Consider, for example, a
complex scene consisting of several objects. It is represented in the brain by the activity of
a large number of neurons. Neurons that represent the same object could be “labeled” by
the fact that they fire synchronously (von der Malsburg, 1981; Eckhorn et al., 1988; Gray
and Singer, 1989).

More generally, not only synchrony but any precise spatio-temporal pulse pattern could
be a meaningful event. For example, a spike pattern of three neurons, where neuron 1 fires
at some arbitrary time 7, followed by neuron 2 at time #; + 82 and by neuron 3 at #; + 6,3,
might represent a certain stimulus condition. The same three neurons firing with different
relative delays might signify a different stimulus. The relevance of precise spatio-temporal
spike patterns has been studied intensively by Abeles (1991). Similarly, but on a somewhat
coarse time scale, correlations of auditory and visual neurons are found to be stimulus
dependent and might convey information beyond that contained in the firing rate alone
(deCharms and Merzenich, 1996; Steinmetz et al., 2000).

Stimulus reconstruction and reverse correlation

Let us consider a neuron which is driven by a time-dependent stimulus s(¢). Every time a
spike occurs, we note the time course of the stimulus in a time window of about 100 ms
immediately before the spike. Averaging the results over several spikes yields the typ-
ical time course of the stimulus just before a spike (de Boer and Kuyper, 1968). Such
a procedure is called a “reverse correlation” approach; see Fig. 7.18. In contrast to the
PSTH experiment sketched in Section 7.2.2 where the experimenter averages the neu-
ron’s response over several trials with the same stimulus, reverse correlation means that
the experimenter averages the input under the condition of an identical response, i.e., a
spike. In other words, it is a spike-triggered average (see, e.g., de Ruyter van Stevenhick
and Bialek 1988; Rieke et al. 1997). The results of the reverse correlation, i.e., the typical
time course of the stimulus that has triggered a spike, can be interpreted as the “mean-
ing” of a single spike. Reverse correlation techniques have made it possible to measure,
for example, the spatio-temporal characteristics of neurons in the visual cortex (Eckhorn
et al., 1993; DeAngelis et al., 1995).

With a somewhat more elaborate version of this approach, W. Bialek and his coworkers
have been able to “read” the neural code of the H1 neuron in the fly and to reconstruct a
time-dependent stimulus (Bialek et al., 1991; Rieke et al., 1997). Here we give a simplified
version of their argument.

Results from reverse correlation analysis suggest that each spike signifies the time course
of the stimulus preceding the spike. If this is correct, a reconstruction of the complete
time course of the stimulus s(z) from the set of firing times .% = {¢(!)...+(")} should be
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Fig. 7.18 Reverse correlation tech-
nique (schematic). The stimulus in
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possible; see Fig. 7.19. As a simple test of this hypothesis, Bialek and coworkers have
studied a linear reconstruction. A spike at time #/ gives a contribution k(t —t/) to the
estimation s®(¢) of the time course of the stimulus. Here, / € .7 is one of the firing times
and K (t —t/) is a kernel which is nonzero during some time before and around #/; see Fig.
7.19b. A linear estimate of the stimulus is

sS4 t) = i K(r—1t7). (7.53)
f=1

The form of the kernel x was determined through optimization so that the average recon-
struction error [ dt[s(t) — s®(t)]*> was minimal. The quality of the reconstruction was then
tested on additional data which was not used for the optimization. Surprisingly enough, the
simple linear reconstruction (7.53) gave a fair estimate of the time course of the stimulus
even though the stimulus varied on a time scale comparable to the typical interspike inter-
val (Bialek et al., 1991; Rieke et al., 1997). This reconstruction method shows nicely that
information about a time-dependent input can indeed be conveyed by spike timing. Chapter
11 will revisit the spike train decoding in the presence of refractoriness and adaptation.

Rate versus temporal codes (*)

The dividing line between spike codes and firing rates is not always as clearly drawn as it
may seem at first sight. Some codes which were first proposed as pure examples of pulse
codes have later been interpreted as variations of rate codes. For example, the stimulus
reconstruction (7.53) with kernels seems to be a clear example of a spike code. Neverthe-
less, it is also not so far from a rate code based on spike counts (Abbott, 1994; Theunissen
and Miller, 1995). To see this, consider a spike count measure with a running time window
K(.). We can estimate the rate v at time 7 by

_ JK(1)S(t—rt)dt

v(t) = Rkma (7.54)

where S(#) =¥, 6(t — t!) is the spike train under consideration. The integrals run from
minus to plus infinity. For a rectangular time window K(7) =1 for —7 /2 < 7 < T /2 and
zero otherwise, (7.54) reduces exactly to our definition of a rate as a spike count measure
in Eq. (7.1).
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Fig. 7.19 Reconstruction of a stimulus (schematic). (a) A stimulus evokes a spike train of a neuron.
The time course of the stimulus may be estimated from the spike train; redrawn after Rieke et al.,
(1996). (b) In the framework of linear stimulus reconstruction, the estimation s°*!(z) (dashed) is the
sum of the contributions x (solid lines) of all spikes.

The time window in (7.54) can be made rather short so that at most a few spikes fall
into the interval 7. Furthermore, there is no need for the window K(.) to be symmetric and
rectangular. We might just as well take an asymmetric time window with smooth borders.
Moreover, we can perform the integration over the §-function, which yields

n
vt)=c Y K(t—t/), (7.55)
f=1
where ¢ = [[K(s)ds] ™! is a constant. Except for the constant ¢ (which sets the overall
scale to units of 1 over time), the generalized rate formula (7.55) is now identical to the
reconstruction formula (7.53). In other words, the linear reconstruction is just the firing
rate measured with a cleverly optimized time window.

Similarly, a code based on the “time-to-first-spike” is also consistent with rate coding.
If, for example, the mean firing rate of a neuron is high for a given stimulus, then the first
spike is expected to occur early. If the rate is low, the first spike is expected to occur later.
Thus the timing of the first spike contains a lot of information about the underlying rate.

The discussion of whether or not to call a given code a rate code is still ongoing. What
is important, in our opinion, is to have a coding scheme which allows neurons to quickly
respond to stimulus changes. A naive spike count code with a long time window is unable
to do this, but a code based on population activities introduced above and many of the other
codes are. The name of such a code, whether it is deemed a rate code or not is of minor
importance.

Example: Towards a definition of rate codes

We have seen above in Eq. (7.55) that stimulus reconstruction with a linear kernel
can be seen as a special instance of a rate code. This suggests a formal definition of a
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rate code via the reconstruction procedure: if all information contained in a spike train
can be recovered by the linear reconstruction procedure of Eq. (7.53), then the neuron
is, by definition, using a rate code. Spike codes would then be codes where a linear
reconstruction is not successful. Theunissen and Miller have proposed a definition of
rate coding that makes the above ideas more precise (Theunissen and Miller, 1995).

To see how their definition works, we have to return to the reconstruction for-
mula (7.53). It is, in fact, the first term of a systematic Volterra expansion for the esti-
mation of the stimulus from the spikes (Bialek ef al., 1991)

S =Y k-t + Y w1 r—t) oo (7.56)
f I
For a specific neuron, inclusion of higher-order terms k>, k3, ... may or may not improve
the quality of the estimation. For most neurons where the reconstruction has been car-
ried through, it seems that the higher-order terms do not contribute a large amount of
information (Rieke et al., 1997). The neurons would then be classified as rate coding.
Let us now suppose that the reconstruction procedure indicates a significant contribu-
tion of the second-order term. Does this exclude rate coding? Unfortunately this is not
the case. We have to exclude two other possibilities. Firstly, we might have chosen a
suboptimal stimulus. A neuron might, for example, encode the variable x by a rate code,
so that a nearly perfect linear reconstruction of x would be possible,

x(t) ~a®t = 2 Ki(t—1). (7.57)
=1

est would

But if we chose a stimulus s = x? instead of x, then the reconstruction for s
involve second-order terms, even though the neuron is really using rate code.

Secondly, according to Theunissen and Miller (1995) a spike code should show a
temporal structure that is more precise than the temporal structure of the stimulus. The
fact that neurons show precise and reliable spike timing as such is, for them, not suf-
ficient to classify the neuron as a temporal encoder, since the neuronal precision could
just be the image of precise temporal input. For a more quantitative treatment, let us
consider a stimulus with cut-off frequency ®. In order to exclude the possibility that
the timing is induced by the stimulus, Theunissen and Miller propose to consider the
Fourier spectrum of the higher-order reconstruction kernels. If the Fourier transform of
the higher-order kernels contains frequencies less than @ only, then the code is a rate
code. If higher-order kernels are significant and contain frequencies above ®, then the
information is encoded temporally. A positive example of a spike code (or of “temporal
encoding”) according to this definition would be the code by correlation and synchrony
introduced above. Another example would be the phase code, in particular if the number
of spikes per cycle is independent of the stimulus strength.
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7.7 Summary

Variability of spike timing is a common phenomenon in biological neurons. Variability
can be quantified by the Cy value of interval distributions, by the Fano factor of the spike
count, or by the repeatability of spike timings between one trial and the next. Whether
the variability represents noise or uncontrolled components of a signal which is not well
characterized is a topic of debate. Experiments show that a neuron in vitro, or in one of the
sensory areas in vivo, shows highly reliable spike timings if driven by a strong stimulus
with large-amplitude fluctuations of the signal. Spontaneous activity in vivo, however, is
unreliable and exhibits large variability of interspike intervals and spike counts.

The simplest stochastic description of neuronal firing is a Poisson process. However,
since each spike firing in a Poisson process is independent of earlier spikes, Poisson firing
cannot account for refractoriness. In renewal processes, the probability of firing depends
on the time since the last spike. Therefore refractoriness is taken care of. The indepen-
dent events are the interspike intervals which are drawn from an interval distribution Py(s).
Knowledge of Py(s) is equivalent to knowing the survivor function Sy(s) or the hazard
po(s). In neurons showing strong adaptation, interspike intervals are not independent so
that renewal theory is not sufficient. Moreover, standard renewal theory is limited to sta-
tionary stimuli, whereas real-world stimuli have a strong temporal component — the solu-
tion is then a time-dependent generalization of renewal theory which we will encounter in
Chapter 14.

A description of neuronal spike trains in terms of firing rates or interval distributions
does not imply that neurons use the firing rate (or interval distribution) to transmit sig-
nals. In fact, neither the spike count (averaging over time) nor the time-dependent rate of
the PSTH (averaging over trials) can be the neural code of sensory processing because
they are too slow given known reaction times. A firing rate in the sense of a population
activity, defined as the instantaneous average of spikes across a population of neurons with
similar properties, is, however, a candidate neural code. Other candidate codes, with some
experimental support are a latency code (time-to-first-spike), or a phase code.

In models, noise is usually added ad hoc to account for the observed variability of neural
spike trains: two standard ways of adding noise to neuron models will be presented in the
next two chapters. But even without explicit noise source, neural activity may look noisy
if the neuron is embedded in a large deterministic network with fixed random connectivity.
The analysis of such networks will be the topic of Part III.

Literature

A review of noise in the nervous system with a focus on internal noise sources can be found
in Faisal et al. (2008). Analysis of spike trains in terms of stochastic point processes has a
long tradition (Perkel et al., 1967a; Gerstein and Perkel, 1972) and often involves concepts



200 Variability of spike trains and neural codes

from renewal theory (Cox and Lewis, 1966). Some principles of spike-train analysis with
an emphasis on modern results have been reviewed by Gabbiani and Koch (1998) and
Rieke et al. (1997). For a discussion of the variability of interspike intervals see the debate
of Shadlen and Newsome (1994), Softky (1995), and Bair and Koch (1996); these papers
also give a critical discussion of the concept of temporal averaging. An accessible mathe-
matical treatment of the inhomogeneous Poisson model in the context of neuronal signals
is given in Rieke er al. (1997). The same book can also be recommended for its excellent
discussion of rate codes, and their limits, as well as the method of stimulus reconstruction
(Rieke et al., 1997).

Exercises

1. Poisson process in discrete and continuous time. We consider a Poisson neuron model in dis-
crete time. In every small time interval At, the probability that the neuron fires is given by v At.
Firing in different time intervals is independent. The limit At — 0 will be taken only at the end.
(a) What is the probability that the neuron does not fire during a time of arbitrarily large length
t=NAt?

Hint: Consider first the probability of not firing during a single short interval At, and then extend
your reasoning to N time steps.

(b) Suppose that the neuron has fired at time t = 0. Calculate the distribution of intervals P(t),
i.e., the probability density that the neuron fires its next spike at a time t = N At.

(c) Start from your results in (a) and (b) and take the limit N — oo, At — 0, while keeping t fixed.
What is the resulting survivor function Sy(t) and the interval distribution Py(s) in continuous
time?

(d) Suppose that the neuron is driven by some input. For t < to , the input is weak, so that its
firing rate is v = 2Hz. For tg <t <t} = tg+ 100 ms, the input is strong and the neuron fires
at v = 20Hz. Unfortunately, however, the onset time ty of the strong input is unknown; can an
observer, who is looking at the neurons output, detect the period of strong input? How reliably?
Hint: Calculate the interval distributions for weak and strong stimuli. What is the probability of
having a burst consisting of two intervals of less than 20 ms each if the input is weak/strong?

2. Autocorrelation of a Poisson process in discrete time. The autocorrelation

Cii(s) = (Si(1) Si(t +5)): (7.58)

is defined as the joint probability density of finding a spike at time t and a spike at time t +s. In
Eq. (7.46) we have stated the autocorrelation of the homogeneous Poisson process in continuous
time. Derive this result by starting with a Poisson process in discrete time where the probability
of firing in a small time interval At is given by v At. To do so, take the following steps:

(a) What is the joint probability of finding a spike in the bin [t,t + At] AND in the bin [t',t’ + At]
wheret #1t'?

(b) What is the joint probability of finding a spike in the bin [t,t + At] AND in the bin [t',t' + At]
wheret =1'?

(c) What is the probability of finding two spikes in the bin [t,t + At]? Why can this term be
neglected in the limit At — 0?

(d) Take the limit At — O while keeping t and t' fixed so as to find the autocorrelation function
Co(s) in continuous time.

3. Repeatability and random coincidences. Suppose that a Poisson neuron with a constant rate
of 20Hz emits, in a trial of 5-second duration, 100 spikes at times 1112, £(100), Afterward,
the experiment is repeated and a second spike train with a duration of 5 seconds is observed.
How many spikes in the first trial can be expected to coincide with a spike in the second trial?
More generally, what percentage of spikes coincide between two trials of a Poisson neuron with
arbitrary rate Vo under the assumption that trials are sufficiently long?
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4. Spike count and Fano factor. A homogeneous Poisson process has a probability to fire in a very
small interval At equal to v At.
(a) Show that the probability of observing exactly k spikes in the time interval T =N At is B.(T) =
[1/k] (vT)* exp(—VvT).
Hint: Start in discrete time and write the probability of observing k events in N slots using the
binomial distribution: P(k;N) = [N!/k!(N —k)!] p* (1 — p)N =% where p is the probability of firing
in a time bin of duration At. Take the continuous time limit with Stirling’s formula N\ =~ (N /e)V.
(b) Repeat the above argument for an inhomogeneous Poisson process.
(c) Show for the inhomogeneous Poisson process that the mean spike count in an interval of
duration T is (k) = fOT v(r)dr.
(d) Calculate the variance of the spike count and the Fano factor for the inhomogeneous Poisson
process.

5. From interval distribution to hazard. During stimulation with a stationary stimulus, interspike
intervals in a long spike train are found to be independent and given by the distribution

o o
P(t|d") = (t T;) exp (—t Tl > (7.59)

fort >t
(a) Calculate the survivor function S(t|t'), i.e., the probability that the neuron survives from time
t' to t without firing.
Hint: You can use [ xe™dx = e®[ay — 1]/a>.
(b) Calculate the hazard function p(t|t'), i.e., the stochastic intensity that the neuron fires, given
that its last spike was at t' and interpret the result: what are the signs of refractoriness?
(c) A spike train starts at time 0 and we have observed a first spike at time t|. We are interested
in the probability that the nth spike occurs around time t,, = t| + s. With this definition of spike
labels, calculate the probability density P(t3|t)) that the third spike occurs around time t3.

6. Gamma distribution. Stationary interval distributions can often be fitted by a Gamma distribu-
tion (for s > 0)

1 Skf 1 /e
P(s)= —+ —e V¢ 7.60
(s) (k—1)1 (7.60)
where k is a positive natural number. We consider in the following k = 1.
(a) Calculate the mean interval (s) and the mean firing rate.
(b) Assume that intervals are independent and calculate the power spectrum.
Hint: Use Eq. (7.45).
7. Cy value of Gamma distribution. Stationary interval distributions can often be fitted by a
Gamma distribution
1 gh=1 /
P(s)= — ——e /7 7.61
©= o e (7.61)
where k is a positive natural number.
Calculate the coefficient of variation Cy for k = 1,2,3. Interpret your result.
8. Poisson with dead time as a renewal process. Consider a process where spikes are generated
with rate po, but after each spike there is a dead time of duration A®. More precisely, we have a
renewal process

p(t|f) =py fort > 7+ A" (7.62)

and zero otherwise.

(a) Calculate the interval distribution, using Egs. ((7.26)) and ((7.27)).

(b) Calculate the Fano factor.

(c) If a first spike occurred at time t = 0, what is the probability that a further spike (there could
be other spikes in between) occurs at t = xAS ywhere x =0.5,1.5,2.5.
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Noisy input models: barrage of spike arrivals

Neurons in the brain receive input from thousands of other, presynaptic neurons, which
emit action potentials and send their spikes to their postsynaptic targets. From the perspec-
tive of a postsynaptic neuron receiving a barrage of spikes, spike arrival times may look
completely random, even under the assumption that presynaptic neurons generate their
spikes by a deterministic process. Indeed, as we have seen in the preceding chapter, inter-
nal noise sources of a cell, such as spontaneous opening of ion channels, do not account for
all the variability of spike-trains encountered in freely behaving animals in vivo. Rather, it
is likely that a large fraction of the apparent variability is generated by the network. Mod-
eling studies confirm that networks with fixed random connectivity can lead to chaos on
the microscopic level, so that spike arrival times appear to be random even if generated by
a deterministic network.

In this chapter, we discuss the consequences of stochastic spike arrivals for modeling.
The “noise” generated by the network is often described by a noise term in the differential
equation of the membrane voltage (Section 8.1). Such a noise term, typically modeled as
white noise or colored noise, can be derived in a framework of stochastic spike arrival,
as shown in Section 8.2. Stochastic spike arrival leads to fluctuations of the membrane
potential which will be discussed in the case of a passive membrane (Section 8.2.1) — or,
more generally, for neuron models in the subthreshold regime. In Section 8.3 we discuss
the differences between subthreshold and superthreshold stimulation and explain its con-
sequences for spike-train variability. We close the discussion of stochastic spike arrival
models in Section 8.4 with a more mathematically oriented exposition of the diffusion
limit and the Fokker—Planck equation.

8.1 Noise input

Neurons are driven by an input current /(¢) which summarizes the effect of synaptic input
from other neurons in the network in vivo or the current injected by an experimenter into a
cell in vitro. Modeling the noisiness of the input amounts to splitting the input current into
two components, a deterministic and a stochastic one

I(e) = 19(0) + 1" (), 8.1)
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Fig. 8.1 Noisy input. (a). A Hodgkin—Huxley model with parameters as in Chapter 2 driven with
white-noise input. (b). The same model driven with colored noise with time constant 7, = 50 ms.
Note that the fluctuations of the membrane potential are slower.

where the deterministic term /9 summarizes the part of the current which is known, or at
least predictable, while the stochastic term /"¢ is the unpredictable, or noisy, part of the
current.

19t would be

For example, during an in vitro study with intracellular current injection,
the current that is set on the switchboard of the current generator, but the actual current
fluctuates around the preset value because of finite temperature. In a neural recording dur-
ing a visual psychophysics experiment in vivo, the part of the input current that does not
change across trials with the same visual stimulus would be summarized as 19t while all
the remaining inputs to the neuron, which vary from one trial to the next, are treated as
noise and summarized as "¢,

For modeling, the noise term is simply added on the right-hand side of the differential
equation of the voltage. For example, a nonlinear integrate-and-fire model with noisy input

has the voltage equation

Tm%u = f(u) + RI®Y(r) + RI™™(r). (8.2)

If u reaches the threshold O, the integration is stopped and the membrane potential reset
to u,. The procedure of adding input noise is completely analogous for biophysical models
of the Hodgkin—Huxley type or integrate-and-fire models with adaptation; see Fig. 8.1.

8.1.1 White noise

The standard procedure of implementing the noise term RI""¢ in the differential equation
of the membrane voltage is to formulate it as a “white noise,” RI™¢(¢) = &(t). White
noise & is a stochastic process characterized by its expectation value,

(&) =0, (8.3)
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and the autocorrelation

ENE) =0t 1), (8.4)
where o is the amplitude of the noise (in units of voltage) and 7, the time constant of the
differential equation (8.2). Eq. (8.4) indicates that the process & is uncorrelated in time:
knowledge of the value £ at time 7 does not enable us to predict its value at any other
time ' # t. The Fourier transform of the autocorrelation function (8.4) yields the power
spectrum; see Section 7.4. The power spectrum of white noise is flat, i.e., the noise is
equally strong at all frequencies.

If the white noise term is added on the right-hand side of (8.2), we arrive at a stochastic
differential equation, i.e., an equation for a stochastic process,

G 1) = () + RIS+ (), 3

also called Langevin equation. In Section 8.2 we will indicate how the noise term & (¢) can
be derived from a model of stochastic spike arrival.

In the mathematical literature, instead of a “noise term” £ (r), a different style of writing
the Langevin equation dominates. To arrive at this alternative formulation we first divide
both sides of Eq. (8.5) by 7, and then multiply by the short time step dt,

du = f(u) ar +RI%\(r) S—t +odW,, (8.6)

Tl‘l’l m

where dW, are the increments of the Wiener process in a short time dt, i.e., dW; are random
variables drawn from a Gaussian distribution with zero mean and variance proportional to
the step size dr. This formulation therefore has the advantage that it can be directly used
for simulations of the model in discrete time. White noise which is Gaussian distributed
is called Gaussian white noise. Note for a numerical implementation of Eq. (8.6) that it is
the variance of the Gaussian which is proportional to the step size; therefore its standard
deviation is proportional to v/dt.

Example: Leaky integrate-and-fire model with white noise input

In the case of the leaky integrate-and-fire model (with voltage scale chosen such that
the resting potential is at zero), the stochastic differential equation is

Tm%u(t) — —u(t)+RI® (1) +E(1), ®7)

which is called the Ornstein—Uhlenbeck process (Uhlenbeck and Ornstein, 1930; van
Kampen, 1992).

We note that the white noise term on the right-hand side is integrated by a time con-
stant 7, to yield the membrane potential. Therefore fluctuations of the membrane poten-
tial have an autocorrelation with characteristic time 1,,. We will refer to Eq. (8.7) as the
Langevin equation of the noisy integrate-and-fire model.
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Fig. 8.2 Noisy integration. A stochastic contribution in the input current of an integrate-and-fire
neuron causes the membrane potential to drift away from the reference trajectory (thick solid line).
The neuron fires if the noisy trajectory (thin line) hits the threshold .

A realization of a trajectory of the noisy integrate-and-fire model defined by Eq. (8.7)
is implemented in discrete time by the iterative update

dr
du= (—u+RI*) = +oVdry, (B8
m

where y is a random number drawn from a zero-mean Gaussian distribution of unit
variance (i.e., dW = v/d y has variance proportional to dr). Note that for small step size
dr and finite current amplitude 79, the voltage steps du are small as well so that, despite
the noise, the trajectory becomes smooth in the limit of dz — 0.

A noisy integrate-and-fire neuron is said to fire an action potential whenever the mem-
brane potential # updated via (8.8) reaches the threshold ©}; see Fig. 8.2. The analysis
of Eq. (8.7) in the presence of the threshold ¥} is one of the major topics of this chap-
ter. Before turning to the problem with threshold, we determine now the amplitude of
membrane potential fluctuations in the absence of a threshold.

8.1.2 Noisy versus noiseless membrane potential

The Langevin equation of the leaky integrate-and-fire model with white noise input is
particularly suitable to compare the membrane potential trajectory of a noisy neuron model
with that of a noiseless one.

Let us consider Eq. (8.7) for constant 6. At ¢ = f the membrane potential starts at a value
u=u, = 0. Since (8.7) is a linear equation, its solution for 7 >  is

R 1 1 t—f
u(t) = = / e/ 11460 ( _ oy ds 4 — / e/ E (1 — 5)ds. (8.9)
Tm JO Tm JO
Since (£ (¢)) = 0, the expected trajectory of the membrane potential is
R R t—t
o (r) = (u(t}f)) = / e/ 100 (; _ ) ds. (8.10)
m JO
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In particular, for constant input current /(99 (¢) = I, we have
Uo(t) = thoo |1 — e~ =0/ (8.11)

with u. = Rlp. Note that, in the absence of a threshold, the expected trajectory is that of
the noiseless model.

The fluctuations of the membrane potential have variance (Au?) = {([u(t|f) — uo(¢)]?)
with ug(¢) given by Eq. (8.10). The variance can be evaluated with the help of Eq. (8.9),
ie.,

(M (1)) = Tiz /O s /0 e e (e (= ) E(t— ). (8.12)

m

We use (& (1 —s)&E(t—s')) = 62 1,,6(s — s') and perform the integration. The result is
(A (1)) = %02 [1 —e—2<’—f)/fm} . (8.13)

Hence, noise causes the actual membrane trajectory to drift away from the noiseless ref-
erence trajectory ug(z). If the threshold is high enough so that firing is a rare event, the
typical distance between the actual trajectory and the mean trajectory approaches with
time constant T,,/2 a limiting value

(Au2) = % o. (8.14)

In proximity to the firing threshold the above arguments break down; however, in the
subthreshold regime the mean and the variance of the membrane potential are well approx-
imated by formulas (8.11) and (8.13), respectively. The mean trajectory and the standard
deviation of the fluctuations can also be estimated in simulations, as shown in Fig. 8.3 for
the leaky and the exponential integrate-and-fire models.

8.1.3 Colored noise

A noise term with a power spectrum which is not flat is called colored noise. Colored noise
I"¢(¢) can be generated from white noise by suitable filtering. For example, low-pass
filtering

d]l’lOlSC (t)
L
where &£(7) is the white noise process defined above, yields colored noise with reduced
power at frequencies above 1/7,. Eq. (8.15) is another example of an Ornstein—Uhlenbeck
process.
To calculate the power spectrum of the colored noise defined in Eq. (8.15), we proceed
in two steps. First we integrate (8.15) so as to arrive at

1M (1) = /O ) K(s) E (1 —s)ds, (8.16)

= " (r) L E(1), (8.15)
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Fig. 8.3 Mean trajectory and fluctuations for (a) the leaky integrate-and-fire model and (b) the expo-
nential integrate-and-fire model driven by white noise superimposed on a constant input that drives
the neuron half-way between resting potential and firing threshold. Integration starts at u = u, and is
repeated for 15 trials (gray lines). The solid line indicates mean trajectories and dashed lines indicate
one standard deviation around the mean. Both models have a time constant of 10 ms. The threshold is
at 1 for the leaky integrate-and-fire neuron (a) and at —50 mV for the exponential integrate-and-fire
neuron (b). The numerical threshold is set at Byese¢ = —30 mV.

where K(s) is an exponential low-pass filter with time constant 7;. The autocorrelation
function is therefore

(17055 () roise (41 — / / K(s) k(') (E(—$)E( — ) ds'ds.  (8.17)
0o Jo
Second, we exploit the definition of the white noise correlation function in (8.4), and find

!/
(I8 (1) [0 (1)) = a exp (lt;”) (8.18)
s

with an amplitude factor a. Therefore, knowledge of the input current at time ¢ gives us a
hint about the input current shortly afterward, as long as |t/ — | < 1.

The noise spectrum is the Fourier transform of (8.18). It is flat for frequencies ® < 1/7
and falls off for @ > 1/7,. Sometimes 1/7; is called the cut-off frequency.

The colored noise defined in (8.15) is a suitable noise model for synaptic input, if spikes
arrive stochastically and synapses have a finite time constant 7;. The relation of input noise
to stochastic spike arrival is the topic of the next section.

8.2 Stochastic spike arrival

A typical neuron, for example, a pyramidal cell in the vertebrate cortex, receives input
spikes from thousands of other neurons, which in turn receive input from their presynaptic
neurons and so forth; see Fig. 8.4. While it is not impossible to incorporate millions of
integrate-and-fire neurons into a huge network model, it is often reasonable to focus the
modeling efforts on a specific subset of neurons, for example, a column in the visual cortex,
and describe input from other parts of the brain as a stochastic background activity.
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Fig. 8.4 Each neuron receives input spikes from a large number of presynaptic neurons. Only a
small portion of the input comes from neurons within the model network; other input is described as
stochastic spike arrival.

Let us consider a nonlinear integrate-and-fire neuron with index i that is part of a large
network. Its input consists of (i) an external input I-e’“( t); (i) input spikes tf from other
neurons j of the network; and (iii) stochastic spike arrival tk due to the background activity
in other parts of the brain. The membrane potential u; evolves according to

gui:f(”’) Ie*t +22w,] )+22w,~k6(r—t,{), (8.19)
ko

dr T

where § is the Dirac d-function and wj; is the coupling strength from a presynaptic neuron
Jj in the network to neuron i. Input from background neurons is weighted by the factor wj.

While the firing times t'; are generated by the threshold crossings of presynaptic integrate-

and-fire neurons, the firing times t,{ of a background neuron k are generated by a Poisson
process with mean rate V.

To simplify the following discussions we adopt three simplifications. First, we focus on
a leaky integrate-and-fire neuron and shift the voltage so that the resting potential is at
zero. Hence we can set f (1) = —u. Second, we concentrate on a single neuron receiving
stochastic input from background neurons. Hence we can drop the sum over j which repre-
sents input from the network and also drop the index i of our specific neuron. We therefore
arrive at

d
$u——?+ 1ext +22wk (t—1). (8.20)

The membrane potential is reset to u, whenever it reaches the threshold . Eq. (8.20) is
called Stein’s model (Stein, 1965, 1967b).

In Stein’s model, each input spike generates a postsynaptic potential Au(r) = wie(t — t,Ef ))
with £(s) = e~/ O(s), i.e., the potential jumps upon spike arrival by an amount wy, and
decays exponentially thereafter. Integration of Eq. (8.20) yields

(tt)-u,exp(—t_t) C/[ texp(—) I(t—s) ds+22wk£t—t[) (8.21)

Tn k=1, f
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for t > f where 7 is the last firing time of the neuron. It is straightforward to generalize
the model so as to include a synaptic time constant and work with arbitrary postsynaptic
potentials £(s) that are generated by stochastic spike arrival; see Fig. 8.5a.

8.2.1 Membrane potential fluctuations caused by spike arrivals

To calculate the fluctuations of the membrane potential caused by stochastic spike arrival,
we assume that the firing threshold is relatively high and the input weak so that the neuron
does not reach its firing threshold. Hence, we can safely neglect both threshold and reset.
The leaky integrate-and-fire model of Stein (Eq. (8.21)) is then equivalent to a model of a
passive membrane driven by stochastic spike arrival.

We assume that each input spike evokes a postsynaptic potential wo €(s) of the same
amplitude and shape, independent of k. The input statistics is assumed to be Poisson, i.e.,
firing times are independent. Thus, the total input spike train (summed across all synapses)

S(t) = i S 8(r—1)) (8.22)

that arrives at neuron i is a random process with expectation
(8(1)) =wo (8.23)
and autocorrelation
(S)S()) = v =v8(t—1'); (8.24)

see Eq. (7.46).

Suppose that we start the integration of the passive membrane equation at t = —eo with
initial condition u, = 0. We rewrite Eq. (8.21) using the definition of the spike train in Eq.
(8.22)

1 oo oo

u(t) = — / exp <S> 1(t —5)ds +wo / £(s)S(t —s)ds. (8.25)

Clo m 0

Obviously, the integration over the §-function in the last term on the right-hand side is

possible and would lead back to the more compact representation wq Zl re(t— t,{ ). The
k

advantage of having the spike train S(¢) appear explicitly is that we can exploit the defini-
tion of the random process S, in particular, its mean and variance.

We are interested in the mean potential uo(t) = (u(¢)) and the variance (Au?) = ([u(t) —
up(t)]?). Using Egs. (8.23) and (8.24) we find

up(t) = é/:exp (_s) I(t—s)ds+wovo /Ome(s) ds (8.26)

T
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Fig. 8.5 Input spikes arrive stochastically (upper panel) at a mean rate of 1 kHz. (a). Each input
spike evokes an excitatory postsynaptic potential (EPSP) &(s) < sexp(—s/7) with 7 = 4ms. The
first EPSP (the one generated by the spike at r = 0) is plotted. The EPSPs of all spikes sum up and
result in a fluctuating membrane potential u(¢). (b). Continuation of the simulation shown in (a).
The horizontal lines indicate the mean (solid line) and the standard deviation (dashed lines) of the
membrane potential.

and
(Au?) = W% /°° /°° go(s) eo(s") (S(t)S(¢")) dsds’ fu%
0 0
=wivo /O £2(s)ds. (8.27)

In Fig. 8.5 we have simulated a neuron which receives input from N = 100 background
neurons with rate vo = 10 Hz. The total spike arrival rate is therefore vy = 1 kHz. Each
spike evokes an EPSP woe(s) = 0.1(s/7) exp(—s/7) with T = 4ms. The evaluation of
Egs. (8.26) and (8.27) for constant input I = 0 yields up = 0.4 and 1/ (Au?) = 0.1.

Example: Stein’s model with step current input

In Stein’s model each background spike evokes an EPSP &(s) = e~5/™ _ In addition,
we assume a step current input which switches at # = 0 from zero to Iy (Iy < 0).

Mean and fluctuations for Stein’s model can be derived by evaluation of Egs. (8.26)
and (8.27) with &(s) = e~/ The result is

uo 210[1 —exp(—t/rm)]—I—wo Vo T, (8.28)
(Au®) = 0.5 Vo T (8.29)

Note that with stochastic spike arrival at excitatory synapses, as considered here, mean
and variance cannot be changed independently. As we shall see in the next subsection, a
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Fig. 8.6 (a). Voltage trajectory of an integrate-and-fire neuron (7,, = 10ms, u, = 0) driven by
stochastic excitatory and inhibitory spike input at v; = v_ = 1kHz. Each input spike causes a
jump of the membrane potential by w4 = 4-0.1. The neuron is biased by a constant current Iy = 0.8
which drives the membrane potential to a value just below the threshold of ¥ =1 (horizontal line).
Spikes are marked by vertical lines. (b). Similar plot as in (a) except that the jumps are smaller
(w4 = £0.025) while rates are higher (v4+ = 16kHz).

combination of excitation and inhibition allows us to increase the variance while keeping
the mean of the potential fixed.

8.2.2 Balanced excitation and inhibition

Let us suppose that an integrate-and-fire neuron defined by Eq. (8.20) with 7,, = 10 ms
receives input from 100 excitatory neurons (w; = +0.1) and 100 inhibitory neurons
(wr = —0.1). Each background neuron £ fires at a rate of v, = 10 Hz. Thus, in each mil-
lisecond, the neuron receives on average one excitatory and one inhibitory input spike.
Each spike leads to a jump of the membrane potential of +0.1. The trajectory of the mem-
brane potential is therefore similar to that of a random walk subject to a return force caused
by the leak term that drives the membrane potential always back to zero; see Fig. 8.6a.

If, in addition, a constant stimulus I°*' = I > 0 is applied so that the mean membrane
potential (in the absence of the background spikes) is just below threshold, then the pres-
ence of random background spikes may drive u toward the firing threshold. Whenever
u > 19, the membrane potential is reset to u, = 0.

Since firing is driven by the fluctuations of the membrane potential, the interspike inter-
vals vary considerably; see Fig. 8.6. Balanced excitatory and inhibitory spike input could
thus contribute to the large variability of interspike intervals in cortical neurons; see Sec-
tion 8.3.

With the above set of parameters, the mean of the stochastic background input vanishes
since Y wg Vi = 0. Using the same arguments as in the previous example, we can con-
vince ourselves that the stochastic arrival of background spikes generates fluctuations of
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the voltage with variance

(Au?) = 0.5, > wi v =0.1; (8.30)
k

see Section 8.4 for a different derivation.

Let us now increase all rates by a factor of @ > 1 and at the same time multiply the synap-
tic efficacies by a factor 1/+/a. Then both mean and variance of the stochastic background
input are the same as before, but the size wy of the jumps is decreased; see Fig. 8.6b. In the
limit a — oo the jump process turns into a diffusion process and we arrive at the stochastic
model of Eq. (8.7). In other words, the balanced action of the excitatory and inhibitory
spike trains, S™¢ and ™ respectively, arriving at the synapses with Poisson input rate
(8¢} = (§"M) = @ v yields in the limit @ — oo a white noise input

iSCXC _ i

Va Va
The above transition is called the diffusion limit and will be systematically discussed in
Section 8.4. Intuitively, the limit process implies that in each short time interval At a large
number of excitatory and inhibitory input spikes arrive, each one causing the membrane
potential to jump by a tiny amount upward or downward.

sinh 5 E(1). (8.31)

Example: Synaptic time constants and colored noise

In contrast to the previous discussion of balanced input, we now assume that each
spike arrival generated a current pulse c(s) of finite duration so that the total synaptic
input current is

RI(t) = wo /0 ou(s) S5 — )ds — wi™ /0 a(s) S™ (1 — 5)ds. (8.32)
If the spike arrival is Poisson with rates (S¢) = (S™) = qv and the synaptic weights
are w¢ = with =y /. /a, then we can take the limit @ — o> with no change of mean or
variance. The result is colored noise.
An instructive case is a(s) = (1/1;) exp(—s/7;)O(s) with synaptic time constant .
In the limit 7, — O we are back to white noise.

8.3 Subthreshold vs. superthreshold regime

One of the aims of noisy neuron models is to mimic the large variability of interspike
intervals found, for example, in vertebrate cortex. To arrive at broad interval distributions,
it is not just sufficient to introduce noise into a neuron model. Apart from the noise level,
other neuronal parameters such as the firing threshold or a bias current have to be tuned so
as to make the neuron sensitive to noise. In this section we introduce a distinction between
super- and subthreshold stimulation (Abeles, 1991; Shadlen and Newsome, 1994; Konig
et al., 1996; Troyer and Miller, 1997; Bugmann et al., 1997).
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An arbitrary time-dependent stimulus /(¢) is called subthreshold if it generates a mem-
brane potential that stays — in the absence of noise — below the firing threshold. Owing to
noise, however, even subthreshold stimuli can induce action potentials. Stimuli that induce
spikes even in a noise-free neuron are called superthreshold.

The distinction between sub- and superthreshold stimuli has important consequences for
the firing behavior of neurons in the presence of noise. To see why, let us consider a leaky
integrate-and-fire neuron with constant input I for > 0. Starting from u(t = 0) = u,, the
trajectory of the membrane potential is

wo(t) = ther [1 —e—f/fm] Fupe (8.33)

In the absence of a threshold, the membrane potential approaches the value u.. = Rl for
t — co. If we take the threshold ¥ into account, two cases may be distinguished. First,
if 1. < ¥ (subthreshold stimulation), the neuron does not fire at all. Second, if u. >
(superthreshold stimulation), the neuron fires regularly. The interspike interval is sq derived
from ug(so) = ¥. Thus

Uoo — Uy
so=TIn

(8.34)
Yoo —

We now add diffusive noise. In the superthreshold regime, noise has little influence,
except that it broadens the interspike interval distribution. Thus, in the superthreshold
regime, the spike train in the presence of diffusive noise is simply a noisy version of the
regular spike train of the noise-free neuron.

On the other hand, in the subthreshold regime, the spike train changes qualitatively if
noise is switched on; see Konig et al. (1996) for a review. Stochastic background input
turns the quiescent neuron into a spiking one. In the subthreshold regime, spikes are gener-
ated by the fluctuations of the membrane potential, rather than by its mean (Abeles, 1991;
Shadlen and Newsome, 1994; Troyer and Miller, 1997; Bugmann et al., 1997; Feng, 2001).
The interspike interval distribution is therefore broad; see Fig. 8.7.

Example: Interval distribution in the superthreshold regime

For small noise amplitude 0 < 0 < ., — ¥, and superthreshold stimulation, the inter-
val distribution is centered at the deterministic interspike interval so. Its width can be
estimated from the width of the fluctuations (Au2) of the free membrane potential;
see Eq. (8.13). After the reset, the variance of the distribution of membrane potentials is
zero and increases slowly thereafter. As long as the mean trajectory is far away from the
threshold, the distribution of membrane potentials has a Gaussian shape.

As time goes on, the distribution of membrane potentials is pushed across the thresh-
old. Since the membrane potential crosses the threshold with slope u, there is a scaling
factor uf, = dug(r)/dr evaluated at r = 5o between the (approximately) Gaussian distri-
bution of membrane potential and the interval distribution; see Fig. 8.8. The interval
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Fig. 8.7 Integrate-and-fire neuron (7,, = 10ms) with superthreshold (left column) and subthresh-
old (right column) stimulation. (a). Without noise, a neuron with superthreshold stimulus I, fires
regularly. Spikes are marked by vertical lines. The threshold is indicated by a horizontal line. The
dashed line shows the evolution of the membrane potential in the absence of the threshold. (b). The
same neuron with subthreshold stimulation 7, does not fire. (c). If we add stochastic excitatory and
inhibitory spike input (w4 = 0.05 at v4 = 1.6 kHz) to the constant input /,, the membrane potential
drifts away from the noise-free reference trajectory, but firing remains fairly regular. (d). The same
sequence of input spikes added to the subthreshold current /;, generates irregular spiking. (e) and (f)
Histogram of interspike intervals in (c) and (d), respectively, as an estimator of the interval distribu-
tion Py(s) in the super- and subthreshold regime. The mean interval (s) is 12ms (e) and 50 ms (f);
the Cy values are 0.30 and 0.63, respectively.
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0 t

Fig. 8.8 Interval distribution Py(¢|0) for superthreshold stimuli. The membrane potential distribution
p(u,t) is shifted across the threshold and generates an interval distribution Py(7|0) (schematic figure).

distribution is therefore also approximately given by a Gaussian with mean s¢ and width
0 /v/2u}y (Tuckwell, 1988), i.e.,

/ IN2 (4 2
Py(1]0) = =L exp | - L) U 50) ] (835)

_\/EO'CXP{_ o2

8.4 Diffusion limit and Fokker-Planck equation (*)

In this section we analyze the model of stochastic spike arrival defined in Eq. (8.20) and
show how to map it to the diffusion model defined in Eq. (8.7) (Gluss, 1967; Johannesma,
1968; Capocelli and Ricciardi, 1971). Suppose that the neuron has fired its last spike at
time 7. Immediately after the firing the membrane potential was reset to u,. Because of
the stochastic spike arrival, we cannot predict the membrane potential for ¢ > 7, but we
can calculate its probability density, p(u,t). The evolution of the probability density as
a function of time is described, in the diffusion limit, by the Fokker—Planck equation
which we derive here in the context of a single neuron subject to noisy input. In Part III
(Section 13.1.1) the Fokker—Planck equation will be introduced systematically in the
context of populations of neurons.

For the sake of simplicity, we set for the time being /°** = 0 in Eq. (8.20). The input
spikes at synapse k are generated by a Poisson process and arrive stochastically with rate
Vi (). The probability that no spike arrives in a short time interval At is therefore

Prob{no spike in [t,¢ +At]} =1 —ka(t)At. (8.36)
k

If no spike arrives in [f,7 + Af], the membrane potential changes from u(z) = u' to u(r +
Ar) = u’ exp(—At/T,). On the other hand, if a spike arrives at synapse k, the membrane



216 Noisy input models: barrage of spike arrivals

potential changes from u’ to u’ exp(—At/1,,) + wy. Given a value of & at time ¢, the prob-
ability density of finding a membrane potential « at time 7 + At is therefore given by

P (u,t + At 1) = |1 —Athk )] 6 (u—u'efA’/T’”)
+ ALY vi(1)6 (u — e M/ wk) . (8.37)
k

We will refer to P as the transition law. Since the membrane potential is given by
the differential equation (8.20) with input spikes generated by a Poisson distribution, the
evolution of the membrane potential is a Markov Process (i.e., a process without memory)
and can be described by (van Kampen, 1992)

pu,t+At) = /Pmms(u,t—|—At|u/,t)p(u',t)du'. (8.38)

We insert Eq. (8.37) in Eq. (8.38). To perform the integration, we have to recall the rules
for §-functions, namely, 8 (au) = a~! 5(u). The result of the integration is

plut+Ar) =1 —Athk )] M/ p (eA'/T’” u,t)
+ A i (1) e p (em/ gy — wk,t) . (8.39)
k

Since At is assumed to be small, we expand Eq. (8.39) about Ar = 0 and find to first order
in At
plu,t+ At) —p(u,t) 1 1 4
— t
Y o Plust) + g put)

+ ka (u— wk,t) —p(u,1)] . (8.40)

For At — 0, the left-hand side of Eq. (8.40) turns into a partial derivative dp(u,t)/dt.
Furthermore, if the jump amplitudes wy are small, we can expand the right-hand side of
Eq. (8.40) with respect to u about p(u,t):

’L’2 (ut)——i
mor PV = 5,

—u+ Tmz\’k(f)wk] p(u,1)
k

82
mzvk ‘| Wp(uat)v (841)

where we have neglected terms of order w,% and higher. The expansion in wy is called the
Kramers—Moyal expansion. Eq. (8.41) is an example of a Fokker—Planck equation (van
Kampen, 1992), i.e., a partial differential equation that describes the temporal evolution
of a probability distribution. The right-hand side of Eq. (8.41) has a clear interpretation:
the first term in rectangular brackets describes the systematic drift of the membrane poten-
tial due to leakage (< —u) and mean background input (o< Y Vi (¢) wy). The second term in
rectangular brackets corresponds to a “diffusion constant” and accounts for the fluctuations
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of the membrane potential. The Fokker—Planck equation (8.41) is equivalent to the Langevin
equation (8.7) with RI(t) = 1, Y Vk(¢) wi and time-dependent noise amplitude

o2 (t) = T 3, Vi(t) . (8.42)
k

The specific process generated by the Langevin equation (8.7) with constant noise ampli-
tude o is called the Ornstein—Uhlenbeck process (Uhlenbeck and Ornstein, 1930), but
Eq. (8.42) indicates that, in the context of neuroscience, the effective noise amplitude
generated by stochastic spike arrival is in general time-dependent. We will return to the
Fokker—Planck equation in Chapter 13.

For the transition from Eq. (8.40) to (8.41) we have suppressed higher-order terms in the
expansion. The missing terms are

n

i (_l)nAn(t)Wp(w) (8.43)

|
=3 n.

with A, = T, 2% vk(t)wz. What are the conditions that these terms vanish? As in the
example of Fig. 8.6a and b, we consider a sequence of models where the size of the weights
wy, decreases so that A, — 0 for n > 3 while the mean > v;(f) wy and the second moment
S vi(?) W% remain constant. It turns out, that, given both excitatory and inhibitory input,
it is always possible to find an appropriate sequence of models (Lansky, 1984, 1997). For
wy — 0, the diffusion limit is attained and Eq. (8.41) is exact. For excitatory input alone,
however, such a sequence of models does not exist (Plesser, 1999).

8.4.1 Threshold and firing

The Fokker—Planck equation (8.41) and the Langevin equation (8.7) are equivalent descrip-
tions of drift and diffusion of the membrane potential. Neither of these describe spike firing.
To turn the Langevin equation (8.7) into a sensible neuron model, we have to incorporate
a threshold condition. In the Fokker—Planck equation (8.41), the firing threshold is incor-
porated as a boundary condition

p(0,r)=0 forallz. (8.44)

The boundary condition reflects the fact that, under a white noise model, in each short
interval Ar many excitatory and inhibitory input spikes arrive which each cause a tiny jump
of size +0 of the membrane potential. Any finite density p(u,z) at a value ¥ — 6 < u < ¥
would be rapidly removed, because one of the many excitatory spikes which arrive at each
moment would push the membrane potential above threshold. The white noise limit corre-
sponds to infinite spike arrival rate and jump size & — 0, as discussed above. As a conse-
quence there are, in each short interval At infinitely many “attempts” to push the membrane
potential above threshold. Hence the density at u = © must vanish. The above argument
also shows that for colored noise the density at threshold is finite, because the effective
frequency of “attempts” is limited by the cut-off frequency of the noise.
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Before we continue the discussion of the diffusion model in the presence of a threshold,
let us study the solution of Eq. (8.41) without threshold.

Example: Free distribution

The solution of the Fokker—Planck equation (8.41) with initial condition p(u,?) =
8(u—u,) is a Gaussian with mean uo(¢) and variance (Au?(1)), i.e.,

- wP
P (”’I)_,/zn@uzu»ep{ 2 (M (1)) } (849

as can be verified by inserting Eq. (8.45) into (8.41). In particular, the stationary distri-
bution that is approached in the limit of # — o for constant input [ is

11 —RI)?
Pl o) = ﬁaexp{m}, (8.46)

which describes a Gaussian distribution with mean u.. = R1 and variance 6/ V2.

8.4.2 Interval distribution for the diffusive noise model

Let us consider a leaky integrate-and-fire neuron that starts at time 7 with a membrane
potential u, and is driven for r > 7 by a known input I(¢). Because of the diffusive noise
generated by stochastic spike arrival, we cannot predict the exact value of the neuronal
membrane potential u(r) at a later time 7 > 7, only the probability that the membrane poten-
tial is in a certain interval [ug,u;]. Specifically, we have

Prob {uo < u(t) < uy |u(f) =u,} = / ) du, (847)
up

where p(u,t) is the probability density of the membrane potential at time 7. In the diffusion
limit, p(u,t) can be found by solution of the Fokker-Planck equation (8.41) with initial
condition p(u,f) = 8(u — u,) and boundary condition p(9,t) = 0.

The boundary is absorbing. In other words, in a simulation of a single realizations of the
stochastic process, the simulation is stopped when the trajectory passes the threshold for the
first time. To be concrete, imagine that we run 100 simulation trials, i.e., 100 realizations
of a leaky integrate-and-fire model with diffusive noise. Each trial starts at the same value
u(f) = u, and uses the same input current /(¢") for ¢’ > 7. Some of the trials will exhibit
trajectories that reach the threshold at some point ¢’ < ¢. Others stay below threshold for
the whole period 7 < ' < t. The expected fraction of simulations that have not yet reached
the threshold and therefore still “survive” up to time # is given by the survivor function,

O
Si(t]f) = [ p(u,)du. (8.48)

In other words, the survivor function in the diffusive noise model is equal to the probability
that the membrane potential has not yet reached the threshold between 7 and .
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Fig. 8.9 Without a threshold, several trajectories can reach at time ¢ the same value u = ¥ from
above or below.

In view of Eq. (7.24), the input-dependent interval distribution is therefore

N
Pt]) = —5_[mp(u,t)du. (8.49)

We recall that Py(¢|f) Ar for At — 0 is the probability that a neuron fires its next spike
between ¢ and t + Ar given a spike at 7 and input /. In the context of noisy integrate-and-fire
neurons P(z|f) is called the distribution of “first passage times.” The name is motivated by
the fact, that firing occurs when the membrane potential crosses ¥ for the first time. Unfor-
tunately, no general solution is known for the first passage time problem of the Ornstein—
Uhlenbeck process. For constant input /(z) = Iy, however, it is at least possible to give a
moment expansion of the first passage time distribution. In particular, the mean of the first
passage time can be calculated in closed form.

Example: Numerical evaluation of P;(z|7)

We have seen that, in the absence of a threshold, the Fokker—Planck equation (8.41)
can be solved; see Eq. (8.45). The transition probability from an arbitrary starting value
' at time ¢/ to a new value u at time ¢ is

5 ’o 1 [uuo(t)]z}
PIS (y tlul ) = ————_exp{ — L MOV 8.50
) = @) eXp{ 22 0) (8.50)

with
uo(t) = u e~ =)/ T _|_/t_t e_sl/TmI(t —5')ds, (8.51)
0
2

(A1) = % [1— 269w ] (8.52)

A method due to Schrodinger uses the solution of the unbounded problem in order to
calculate the input-dependent interval distribution P (¢|f) of the diffusion model with
threshold (Schrodinger, 1915; Plesser and Tanaka, 1997; Burkitt and Clark, 1999). The
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Fig. 8.10 A time-dependent input current I(¢) generates a noise-free membrane potential u(¢)
shown in the lower part of the figure. In the presence of diffusive noise, spikes can be triggered
although the reference trajectory stays below the threshold (dashed line). This gives rise to an input-
dependent interval distribution P;(z|0) shown in the upper panel. Taken from Plesser and Gerstner
(2000).

idea of the solution method is illustrated in Fig. 8.9. Because of the Markov property,
the probability density of crossing the threshold (not necessarily for the first time) at a
time ¢ is equal to the probability of crossing it for the first time at ¢’ < ¢ and returning
back to ¥ at time ¢, i.e.,

1
Pmms(ﬁ,ﬂur,f) — / P](l‘/‘f)Ptrans(ﬁ,t‘ﬂ,t/)dl‘/. (853)
t

This integral equation can be solved numerically for the distribution P;(z'|f) for arbitrary
input current /(¢) (Plesser, 2000). An example is shown in Fig. 8.10. The probability of
emitting a spike is high whenever the noise-free trajectory is close to the firing threshold.
Very long intervals are unlikely, if the noise-free membrane potential was already several
times close to the threshold before, so that the neuron has had ample opportunity to fire
earlier.

8.4.3 Mean interval and mean firing rate (diffusive noise)

For constant input /p the mean interspike interval is (s) = [;"s P, (s]0)ds = [" s Py(s)ds;
see Eq. (7.13). For the diffusion model Eq. (8.7) with threshold ¥}, reset potential u,, and
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0.2
E Fig. 8.11 Mean firing rate of a leaky
2 017 integrate-and-fire model as a function of con-
h stant input evaluated for different levels of
diffusive noise, using the Siegert formula, Eq.
(8.54). From top to bottom: 0 = 1.0, 0 =0.5,
0=—= o = 0.2 (solid line), c = 0.1, 0 = 0.0.

Normalized I

membrane time constant T,,, the mean interval is
¥—hgy

(s) = TuV/T / . duexp (i) [1+erf(u)] (8.54)

ur—nh
(o2

where hyp = RI is the input potential caused by the constant current Iy (Siegert, 1951;
Johannesma, 1968). Here “erf” denotes the error function erf(x) = % J5 exp(—u?)du. This
expression, sometimes called the Siegert formula, can be derived by several methods; for
reviews see, for example, van Kampen (1992). The inverse of the mean interval is the
mean firing rate. Hence, Eq. (8.54) enables us to the express the mean firing rate of a
leaky integrate-and-fire model with diffusive noise as a function of a (constant) input Iy
(Fig. 8.11). We will derive Eq. (8.54) in Chapter 13 in the context of populations of spiking
neurons.

8.5 Summary

Each spike arrival at a synapse causes an excursion of the membrane potential of the post-
synaptic neuron. If spikes arrive stochastically the membrane potential exhibits fluctua-
tions around a mean trajectory. If the fluctuations stay in the subthreshold regime where
the membrane properties can be approximated by a linear equation, the mean and the stan-
dard deviation of the trajectory can be calculated analytically, given the parameters of the
stochastic process that characterize spike arrivals. In the presence of a firing threshold,
the fluctuations in the membrane potential caused by stochastic spike arrivals can make the
neuron fire even if the mean trajectory would never reach the firing threshold.

In the limit that the rate of spike arrival at excitatory and inhibitory synapses is high
while each spike causes only a small jump of the membrane potential, synaptic bombard-
ment can be approximated by the sum of two terms: a mean input current and a Gaussian
white noise input. The white noise leads to a “diffusion” of the membrane potential tra-
jectory around the mean trajectory. The evolution of the probability distribution p(u,t) of
the membrane potential over time is described by a Fokker—Planck equation. For the leaky
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integrate-and-fire model and stationary input, the Fokker—Planck equation can be solved
analytically. For nonlinear integrate-and-fire neurons and time-dependent input numerical
solutions are possible. We will return to the Fokker—Planck equations in Chapter 13 where
further results will be derived.

Literature

Stochastic spike arrival as an important source of noise has been discussed by Stein in
the context of integrate-and-fire models (Stein, 1965, 1967b). The accessible review arti-
cle of Konig et al. (1996) highlights how stochastic spike arrival in the input can lead
to a broad interspike interval distribution in the output of a neuron. The close relation
between stochastic spike arrival and diffusive noise has been known for a long time (Gluss,
1967; Johannesma, 1968). The leaky integrate-and-fire model with diffusive noise is equiv-
alent to the Ornstein—Uhlenbeck process (Uhlenbeck and Ornstein, 1930) with an absorb-
ing boundary. Mathematical results for integrate-and-fire models with diffusive noise are
reviewed in Tuckwell (1989). An in-depth treatment of the mathematical theory of stochas-
tic processes and Fokker—Planck equations can be found in van Kampen (1992).

Exercises

1. Colored noise.
(a) Calculate the noise spectrum of the colored noise defined by Eq. (8.15) which we repeat
here:

noise .
0 iy 4 £0), (8.55)
where &E(t) is white noise with mean zero and variance
(ENEMX)) =0?1,8(—1). (8.56)

(b) Calculate the membrane potential fluctuations {(Au(t))?) caused by the colored noise in
Eq. (8.55), using the differential equation

rm% (1) = —u(t) + RI%\(t) + RIS (1), (8.57)
(c) Show that the limit process of balanced excitatory and inhibitory input with synaptic time
constant Ty leads to colored noise.

2. Autocorrelation of the membrane potential. Determine the autocorrelation (u(t)u(t')) of the
Langevin equation (8.7) where £ (1) is white noise.

3. Membrane potential fluctuations and balance condition. Assume that each spike arrival at an
excitatory synapse causes an EPSP with weight w™*¢ = +w and time course £(t) = (t*/13..)
exp(—1/Texc) fort > 0. Spike arrival at an inhibitory synapse causes an IPSP with weight —bw°
and, fort > 0, a time course €™(t) = (t /T2, ) exp(—t/Tinn) Where Tiph > Texc and b > 1.

The membrane potential is

u(t) =w™eY et — /) —pw™ Y (s — 1)) (8.58)
tf tf
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Excitatory and inhibitory spike arrival are generated by Poisson processes rate V*¢ = v| and
vilh — By, respectively.

(a) Determine the mean membrane potential.

(b) Calculate the variance of the fluctuations of the membrane potential.

(c) You want to increase the rate v| without changing the mean or the variance of the mem-
brane potential. Does this limit exist for all combinations of parameters b and 3 or do you have

to impose a specific relation b = f(B)? Interpret your result.
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Noisy output: escape rate and soft threshold

There are various ways to introduce noise in formal spiking neuron models. In the previous
chapter we focused on input noise in the form of stochastic spike arrival. In this chapter
we assume that the input is known or can be estimated. Stochasticity arises at the level of
the neuronal spike generation, i.e., at the moment of the output. The noisy output can be
interpreted as arising from a “soft” threshold that enables an “escape” of the membrane
potential across the threshold even before the threshold is reached. Models with a noisy
threshold or escape noise are the basis of Generalized Linear Models which will be used
in Chapters 10 and 11 as a powerful statistical tool for modeling spike-train data.

In Section 9.1, the notion of escape noise is introduced. In Section 9.2 we determine
the likelihood that a specific spike train is generated by a neuron model with escape noise.
In Section 9.3 we apply the escape noise formalism to the Spike Response Model already
encountered in Chapter 6 and show an interesting link to the renewal statistics encountered
in Chapter 7. The escape rate formalism gives rise to an efficient description of noise
processes, independently of their biophysical nature, be it channel noise or stochastic spike
arrival. Indeed, as shown in Section 9.4, noisy input models and noisy output models can
behave rather similarly.

9.1 Escape noise

In the escape noise model, we imagine that an integrate-and-fire neuron with threshold %
can fire even though the formal threshold ¥} has not been reached, or may stay quiescent
even though the formal threshold has transiently been passed. To do this consistently, we
introduce an “escape rate” or “firing intensity” which depends on the momentary state of
the neuron.

9.1.1 Escape rate

Given the input /(¢') for #/ < t and the past firing times #/ < ¢, the membrane potential of a
generalized integrate-and-fire model (e.g., the adaptive leaky integrate-and-fire model) or a
Spike Response Model (SRM) can be calculated from Eq. (6.7) or Eq. (6.27) respectively;
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>

Fig. 9.1 Noisy threshold. A neuron can fire at time ¢ with probability density p(¢) = flu(t) — O]
even though the membrane potential u has not yet reached the threshold ?}. In other words, the sharp
threshold of the deterministic neuron is replaced by a “soft” threshold.

see Chapter 6. For example, the value of the membrane potential of an SRM can be
expressed as

u(t) = ZH(I —lf) —l—/w K(s) Idet(t —5) ds + Urest, 9.1)
f 0

where 79 is the known driving current (the superscript “det” stands for deterministic) and
Kk and 1 are filters that describe the response of the membrane to an incoming pulse or
an outgoing spike; see Chapter 6. In the deterministic model the next spike occurs when u
reaches the threshold ¢. In order to introduce some variability into the neuronal spike gen-
erator, we replace the strict threshold by a stochastic firing criterion. In the noisy threshold
model, spikes can occur at any time with a probability density

p (1) = flu(t) =) 9.2)

that depends on the momentary distance between the (noiseless) membrane potential and
the threshold; see Fig. 9.1. We can think of f as an escape rate similar to the one encoun-
tered in models of chemical reactions (van Kampen, 1992). In the mathematical theory
of point processes, the quantity p is called a “stochastic intensity.” Since we use p in the
context of neuron models we will refer to it as a firing intensity.

The choice of the escape function f in Eq. (9.2) is arbitrary. A reasonable condition is
to require f — O for u — —eo so that the neuron does not fire if the membrane potential is
far below threshold. A common choice is the exponential,

Flu=9) =~ explB (u— 9], 93)
where  and 1y are parameters. For B — oo, the soft threshold turns into a sharp one so
that we return to the noiseless model. Below we discuss some further choices of the escape
function in Eq. (9.2).

The SRM of Eq. (9.1) together with the exponential escape rate of Eq. (9.3) is an
example of a Generalized Linear Model. Applying the theory of Generalized Linear Mod-
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Fig. 9.2 Flow diagram for a Spike Response Model (SRM) with escape noise. The stochasticity at the
noisy threshold is indicated by the dice; see Fig. 6.11. The noisy SRM (Gerstner and van Hemmen,
1992; Gerstner and Kistler, 2002) is an example of a Generalized Linear Model (GLM) (Truccolo
et al., 2005; Pillow et al., 2008).

els (see Chapter 10) to the SRM with escape noise enables a rapid extraction of model
parameters from experimental data.

In slice experiments it was found (Jolivet et al., 2006) that the exponential escape rate
of Eq. (9.3) provides an excellent fit to the spiking intensity of real neurons (Fig. 9.3).
Moreover, the firing times of an AdEx model driven by a deterministic fluctuating current
19(¢) and a unknown white noise current & () can also be well fitted by the Spike Response
Model of Eq. (9.1) combined with an exponential escape rate as we shall see below in
Section 9.4.

Nevertheless, we may wonder whether Eq. (9.2) is a sufficiently general noise model.
We have seen in Chapter 2 that the concept of a pure voltage threshold is questionable.
More generally, the spike trigger process could, for example also depend on the slope
1t = du/dr with which the “threshold” is approached. In the noisy threshold model, we
may therefore also consider an escape rate (or hazard) which depends not only on u but
also on its derivative i

p (1) = flu(t) = 0,a(t)]. 9.4)

We will return to Eq. (9.4) in Section 9.4.

Note that the time dependence of the firing intensity p(z) on the right-hand side of
Eq. (9.4) arises implicitly via the membrane potential u(z). In an even more general model,
we could in addition include an explicit time dependence, for example, to account for a
reduced spiking probability immediately after a spike at #/. Instead of an explicit depen-
dence, a slightly more convenient way to implement an additional time dependence is via
a time-dependent threshold ¥ — 9(¢) which we have already encountered in Eq. (6.31).
An even more general escape rate model therefore is

p() = flult) (1), )] ©.5)

In Chapter 11 we shall see that a Spike Response Model with escape noise and dynamic
threshold can explain neuronal firing with a high degree of accuracy.
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Fig. 9.3 The instantaneous firing intensity extracted from experiments can be fitted by an exponen-
tial escape rate. (a) A real neuron is driven by a time-dependent input current (top) generating a
fluctuating voltage with occasional spikes (middle), which are repeated with high precision, but not
perfectly, across several trials (bottom). (b) The black histogram (very small) shows the number of
times (bin count, vertical axis) that the model voltage calculated from Eq. (9.1) falls in the bin u — ¥
(horizontal axis) and the real neuron fires. The gray histogram indicates distribution of voltage when
the real neuron does not fire. The ratio (black/black plus gray) in each bin gives the firing probability

Pr(u— 1) (open circles, probability scale on the right) which can be fitted by Eq. (9.8) using an

exponential escape rate (solid line), f(u— ) = + exp[B (u — ©¥)] with a steepness of f = (4mV)~!

T
and a mean latency at threshold of 79 = 19 ms. Froom Jolivet et al. (2006) with kind permission from

Springer Science and Business Media.

Example: Bounded versus unbounded escape rate

A stochastic intensity which diverges for u > 1, such as the exponential escape rate of
Eq. (9.3), may seem surprising at a first glance, but itis in fact a necessary requirement for
the transition from a soft to a sharp threshold process. Since the escape model has been
introduced as a noisy threshold, there should be a limit of low noise that leads us back
to the sharp threshold. In order to explore the relation between noisy and deterministic
threshold models, we consider as a first step a bounded escape function f defined as

0 for u < 19,
=W} = { AL for u> 9. (25

Thus, the neuron never fires if the voltage is below the threshold. If # > 1, the neuron
fires stochastically with a rate A~!. Therefore, the mean latency, or expected delay, of a
spike is A. This implies that the neuron responds slowly and imprecisely, even when the
membrane potential is significantly above threshold — and this result looks rather odd.
Only in the limit where the parameter A goes to zero would the neuron fire immediately
and reliably as soon as the membrane potential crosses the threshold. Thus, a rapid
response requires the escape to diverge.

The argument here was based on a step function for the escape rate. A simple choice
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" Fig. 9.4 Soft threshold escape rates. Exponential
“ b function (solid), piecewise linear function (dot-
3 ted), step function (dashed), and error function
(dot-dashed). The step function and error function
saturate at a maximum rate of A~!. The threshold
is ¥

for a soft threshold which enables a rapid response is a piecewise linear escape rate,

0 for u < ¥,

o(u—1) foru> 1, ©.7)

flu= ) =alu- 0, = {
with slope o for u > ¥. For u > ¥, the firing intensity is proportional to u — ¥; see
Fig. 9.4. This corresponds to the intuitive idea that instantaneous firing rates increase
with the membrane potential. Variants of the linear escape-rate model are commonly
used to describe spike generation in, for example, auditory nerve fibers (Siebert and
Gray, 1963; Miller and Mark, 1992).

9.1.2 Transition from continuous time to discrete time

In discrete time, we consider the probability Pr(u) of firing in a finite time step given that
the neuron has membrane potential u. It is bounded from above by 1 — despite the fact
that the escape rate can be arbitrarily large. We start from a model in continuous time and
discretize time as is often done in simulations. In a straightforward discretization scheme,
we would calculate the probability of firing during a time step A as [/ ™ p(¢/)dt’ ~ p (1) Ar.
However, for u > ¥, the hazard p () = f(u(t) — ©) can take large values; see, for example,
Eq. (9.3). Thus At must be taken extremely short so as to guarantee p () Ar < 1.

To arrive at an improved discretization scheme, we calculate the probability that a neuron
does not fire in a time step Az. The probability S(¢) of surviving for a time ¢ without firing
decays according to dS/dr = —p(¢) S(¢). Integration of the differential equation over a finite
time At yields an exponential factor S(t) = exp[— [; p(¢') d¢']; compare the discussion of
the survivor function in Chapter 7 (Section 7.5). If the neuron does not survive, it must
have fired. Therefore we arrive at a firing probability

Pr(u) = Prob{spike in [f,r + Ar] |u(t)} = 1 —exp{—Ar f(u(t) — )} . (9.8)

Even if f diverges for u — oo, the probability of firing remains bounded between zero and
1. Also, we see that, for small A¢, the probability Pr scales as fAr. We see from Fig. 9.5a
that, for an exponential escape rate, an increase in the discretization At mainly shifts the
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Fig. 9.5 The unbounded exponential escape rate yields a bounded firing probability in a discrete time
step. (a) Probability of firing in a discrete time interval Az as a function of the membrane potential u
for different discretizations Ar = 0.5 ms (dashed line), Ar = 1 ms (solid line), and At = 2 ms (dotted
line) with B = 5. (b) Similar plot as in A but for different noise levels 8 = 10 (dotted line), § =5
(solid line), B = 2 (dashed line), and B = 1 (dot-dashed line) with Az = 1 ms. The escape rate is
given by (9.3) with parameters ¥ = 1 and 7y = 1 ms.

firing curve to the left while the form remains roughly the same. An increase of the noise
level makes the curve flatter; see Fig. 9.5b.

Note that, because of refractoriness, it is impossible for integrate-and-fire models (and
for real neurons) to fire more than one spike in a short time bin Az. Refractoriness is imple-
mented in the model of Eq. (9.1) by a significant reset of the membrane potential via the
refractory kernel 1.

9.2 Likelihood of a spike train

In the previous subsection, we calculated the probability of firing in a short time step At
from the continuous-time firing intensity p(¢). Here we ask a similar question, not on the
level of a single spike, but on that of a full spike train.

Suppose we know that a spike train has been generated by an escape noise process

p(t) = f(u(t) - 9) 9.9)

as in Eq. (9.2), where the membrane potential u(¢) arises from the dynamics of one of the
generalized integrate-and-fire models such as the SRM.
The likelihood L” that spikes occur at the times ¢!, ...,#/,... " is (Brillinger, 1988)

T
({2 ) =p(h) - p(e?) - ... p(r") exp [—/0 p(s)ds} ; (9.10)

where [0,7] is the observation interval. The product on the right-hand side contains the
momentary firing intensity p(¢/) at the firing times ¢!,#2,...,#". The exponential factor
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takes into account that the neuron needs to “survive” without firing in the intervals between
the spikes.

In order to highlight this interpretation it is convenient to take a look at Fig. 9.6a and
rewrite Eq. (9.10) in the equivalent form

L2 M) = exp [— /(: p<s)ds]

p(t")  exp [— ]t p(s)ds] 9.11)

3

() exp [— /,

pl") exp [—/tTp(s)ds}

p (s)ds]

n

Intuitively speaking, the likelihood of finding n spikes at times 7/ depends on the instanta-
neous rate at the time of the spikes and the probability of surviving the intervals in between
without firing; see the survivor function introduced in Chapter 7, Eq. (7.26).

Instead of the likelihood, it is sometimes more convenient to work with the logarithm of
the likelihood, called the log-likelihood

. T 1
logL"({t',....t/,....1"}) = —/0 p(s)ds+ Y logp(t). 9.12)
: A

The three formulations Eqgs. (9.10)—(9.12) are equivalent and it is a matter of taste if one
is preferred over the others.

Example: Discrete-time version of likelihood and generative model

In a discrete-time simulation of an SRM or generalized integrate-and-fire model with
escape noise, we divide the simulation interval [0, 7] into N time steps At = T'/N; see
Fig. 9.6b. In each time step, we first calculate the membrane potential u(¢) and then gen-
erate a spike with probability P, = Pr(u(t)) given by Eq. (9.8). To do so, we generate on
the computer a random number 7, between zero and unity. If P, > r;, a spike is gener-
ated, i.e., the spike count number in this time bin is n, = 1. The probability of finding an
empty time bin (spike count n; = 0) is

Prob {silent in [f,t + At]} = 1— P, = exp{—Arp(¢)}, (9.13)

where we have assumed that time bins are short enough so that the membrane potential
does not change a lot from one time step to the next. The spike train can be summarized
as a binary sequence {0,0,1,0,0,0,1,0,...} of N numbers n, € {0,1}. We emphasize
that, with the above discrete-time spike generation model, it is impossible to have two
spikes in a time bin Az. This reflects the fact that, because of neuronal refractoriness,
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neurons cannot emit two spikes in a time bin shorter than, say, half the duration of an
action potential.

Since we generate an independent random number in each time bin, a specific spike
train occurs with a probability given by the product of the probabilities per bin:

Potal = Ipins with spike [Pz] . l_[empty bins[1 - Pt] (9.14)
=IL{[R]" - [1-R])'"™}, (9.15)

where the product runs over all time bins and n, € {0, 1} is the spike count number in
each bin.

We now switch our perspective and study an observed spike train in continuous time
with spike firings at times #/ with 0 < ¢',72,...," < T. The spike train was generated
by a real neuron in a slice experiment under current injection with a known current (z).
We now ask the following question: What is the probability that the observed spike train
could have been generated by our model? Thus, we consider our discrete-time model
with escape noise as a generative model of the spike train. To do so, we calculate the
voltage using a discrete-time version of Eq. (9.1). Given the (known) injected input /(7)
and the (observed) spike times ¢/, we can calculate the voltage u(¢) of our model and
therefore the probability of firing in each time step.

The observed spike train has 7 spikes at times 0 < ¢!,#2,...,#" < T. Let us denote time
bins containing a spike by #; with index k (i.e., f; < L <n+A 6 <t2<th+At...)
and empty bins by #; with a dummy index k’. Using Eq. (9.14), the probability that the
observed spike train could have been generated by our model is

Potar = Ty [Py ] - Ty g0 [1 = By ] - (9.16)

Eq. (9.16) is the starting point for finding optimal parameters of neuron models (Chapter
10).

We can gain some additional insights, if we rearrange the terms on the right-hand side
of Eq. (9.16) differently. All time bins that fall into the interval between two spikes can
be regrouped as follows

H{k/ltk<tk/ <tr+1 } [1 - Bk/] = H{k"tk<tk/ <tg+1 } exXp {_Atp (tk/)}

:exp{— Y Atp(tk/)}. 9.17)

e <tpr <t

Ideally, a spike train in continuous time should be described by a model in continuous
time. We therefore ask whether the discretization of time is critical or whether we can
get rid of it. The transition to continuous time corresponds to the limit of N — co while
T is kept fixed. The Riemann sum on the right-hand side of Eq. (9.17) then turns into an
integral. In the same limit, the contribution of the bins containing a spike to Eq. (9.16)
can be written as P, = p(fx)Ar. We are led back from the discrete-time generative model
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Fig. 9.6 Likelihood of a spike train. Three spikes (thick vertical lines) have been observed in the
interval [0, ). (a) The instantaneous firing rates at the moment of the spikes are p(¢!), p(£2), p(¢3),
respectively. The intervals without spike firing are indicated by horizontal braces. The probability
of staying quiescent during these intervals decays exponentially with the time-dependent rate p(¢').
(b) Likelihood of a spike train in discrete time. Top: The probability that a time bin #;; contains no
spike is 1 — P, whereas the probability that a spike occurs in bin #; is F,. Middle: The spike count
numbers n; € {0,1} in each time bin. Bottom: The same spike train can also be described using a
finer time discretization.

to Eq. (9.11) in continuous time with the replacement
Poa = L*({t",1%,...1"})(A1)", (9.18)

i.e., the continuum limit exists. In other words, once the time steps At are short enough,
the exact discretization scheme does not play arole. Alternative, more efficient, sampling
schemes exist that avoid discretization (Brown et al., 2002); see Section 10.3.3.

9.3 Renewal approximation of the Spike Response Model

We focus on a Spike Response Model with escape noise; see Egs. (9.1)—(9.3). If the firing
rate is low, so that the interspike interval is much longer than the decay time of the refrac-
tory kernel 1, then we can truncate the sum over past firing times and keep track only of
the effect of the most recent spike (Gerstner, 1995)

u(t) =n(—7) +/0w K(5) 19 (t — 5) s + ttrest, 9.19)

where 7 denotes the last firing time /' < 1.

Eq. (9.19) is called the “short-term memory” approximation of the SRM and abbreviated
as SRMy. This model can be efficiently fitted to neural data (Kass and Ventura, 2001) and
will play an important role in Chapter 14. In order to emphasize that the value of the
membrane potential depends only on the most recent spike, in what follows we write u(z|f)
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Fig. 9.7 (a) Interval distribution Py(s) for an SRM( neuron with absolute refractory period Abs —
4 ms followed by an exponentially decreasing afterpotential as in Eq. (9.24) with g =1 and 7 =
4 ms. The model neuron is stimulated by a constant current Iy = 0.7,0.5,0.3 (from top to bottom).
(b) Output rate v as a function of I (gain function). The escape rate is given by Eq. (9.3) with ¢ =1,
B =5,and 1p = 1 ms.

instead of u(¢). Let us summarize the total effect of the input by introducing the “input
potential”

h(t) = /0 ) K(s) 19 (t — 5) ds, (9.20)
which allows us to rewrite Eq. (9.19) as
u(t|lf) =n(t —7) +h(t) + vrest - 9.21)
The escape rate
p(e]f) = f(u(t]F)) (9.22)

depends on the time since the last spike and, implicitly, on the stimulating current Ige(#).
Hence p (¢|f) is similar to the hazard variable of stationary renewal theory. The arguments
of Chapter 7 can be generalized to the case of time-dependent input 79'(¢) which gives rise
to a time-dependent input potential (). Given that the neuron has fired its last spike at
time 7 and that we know the input 79(¢) for ¢’ < t we can calculate the probability density
that the next spike occurs at time ¢ > 7

Py (t|f) = p(t|f) exp {—/I p(t/|f)dt/} : (9.23)

Eq. (9.23) generalizes renewal theory to the time-dependent case. Time-dependent renewal
theory will play an important role in Chapter 14.

Compared to the standard stationary renewal theory discussed in Chapter 7, there are
two important differences. First, the Spike Response Model with escape noise provides a
direct path from stationary to time-dependent renewal theory. Second, interval distributions
can be linked to refractoriness and vice versa. More precisely, a reduced firing intensity
p(¢|f) immediately after a spike is an indication that the distance between the membrane
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Fig. 9.8 (a) Input-dependent interval distribution P;(¢|0) for an SRMy neuron as in Fig. 9.7 stimu-
lated by a periodically modulated input field A(r) = hy + h; cos(27 ft) with hg = 0.5, hy = 0.1, and
frequency f = 500 Hz. (b) The membrane potential u(¢|0) = 1(¢) + h(¢) during stimulation as in (a).

potential u(z|f) and the threshold is increased. The reason can be either a hyperpolarizing
spike-afterpotential 1(7) or an increase in the firing threshold ¥ (¢|f) immediately after a
spike

Example: Interval distribution with exponential escape noise

We study a model SRM, with membrane potential u(z|f) = 1 (¢ —f) + h(¢) and choose
a refractory kernel with absolute and relative refractoriness defined as

{ —oo for s < A,

—1o exp (—S’Aam) for s > A™S, ©-24)

n(s) =

T

We adopt the exponential escape rate (9.3).

Fig. 9.7 shows the interval distribution for constant input current /y as a function of
s=t—f. With the normalization [;" k(s)ds = 1, we have hy = Ip. Owing to the refrac-
tory term 1), extremely short intervals are impossible and the maximum of the interval
distribution occurs at some finite value of s. If Ij is increased, the maximum is shifted
to the left. The interval distributions of Fig. 9.7a have qualitatively the same shape as
those found for cortical neurons. The gain function v = g(Iy) of a noisy SRMy neuron
is shown in Fig. 9.7b.

We now study the same model with periodic input 19(¢) = I +I; cos(Q¢). This leads
to an input potential h(r) = ho + hy cos(Qt + ¢;) with bias iy = Iy and a periodic com-
ponent with a certain amplitude /; and phase ;.

Suppose that a spike has occurred at 7 = 0. The probability density that the next spike
occurs at time ¢ is given by P;(¢|f) and can be calculated from Eq. (9.23). The result is
shown in Fig. 9.8a.
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We note that the periodic component of the input is well represented in the response
of the neuron. This example illustrates how neurons in the auditory system can transmit
stimuli of frequencies higher than the mean firing rate of the neuron. We emphasize that
the threshold in Fig. 9.8b is at ¥} = 1. Without noise there would be no output spike. On
the other hand, at very high noise levels, the modulation of the interval distribution would
be much weaker. Thus a certain amount of noise is beneficial for signal transmission. The
existence of an optimal noise level is a phenomenon called stochastic resonance and will
be discussed below in Section 9.4.2.

9.4 From noisy inputs to escape noise

The total input current /(r) which drives a neuron can often be separated into a determin-
istic component Idet, which is known and repeats between one trial and the next; and a
stochastic component & which is unknown and potentially changes between trials:

I(r) = 1% (t) + E(1). (9.25)

In this section we show that the noisy, unknown part in the input can be approximated to a
high degree of accuracy by an appropriately chosen escape function.

Example: Adaptive exponential integrate-and-fire model with noisy input

Suppose that the AJEx model which we encountered in Chapter 6 (see Egs. (6.3) and
(6.4)) is driven by an input as in Eq. (9.25) containing a rapidly moving deterministic
signal 19(¢) as well as a white noise component &(z). This model generates spikes
with a millisecond precision and a high degree of reliability from one trial to the next
(Fig. 9.9). We now approximate the voltage of the AdEx model by a linear model

u(t) =S —if)+ / " k() 194t — 5) ds + trest. (9.26)
7 0

In the subthreshold regime u < ¥ — Ay, the filters k and 7 can be calculated analytically
using the methods discussed in Chapter 6. The voltage equation (9.26) is then combined
with the exponential escape rate

flu—19)= Tio explB (u—b)]. ©.27)

The resulting SRM with escape noise (i.e., a linear model with exponential soft-
threshold noise in the output) describes the activity of the AdEx with noisy input (i.e.,
an exponential neuron model with additive white noise in the input) surprisingly well
(Fig. 9.9). In other words, in the presence of an input noise & (¢) the exponential term in
the voltage equation of the AdEx model can be replaced by an exponential escape rate
(Mensi et al., 2011).
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Fig. 9.9 From input noise to output noise. (a) An AdEx model neuron is driven by a fluctuating
current containing a deterministic part which is the same during each trial and a stochastic white
noise part. (b) Voltage trace of the AdEx model (black) and the SRM with exponential escape rate
(gray) during a single trial. The SRM is driven by the determinstic part of the input current. (c) Spike
times during 20 trials with the same determinstic current for the AdEx model (black) and SRM with
exponential escape noise (gray). For the AdEx the stochasticity arises from white noise in the input
whereas for the SRM it arises from escape noise in the output. (d) Comparison of the PSTH of the
AdEx model (black) with that of the SRM (gray). Adapted from Mensi et al. (2011).

9.4.1 Leaky integrate-and-fire model with noisy input

In the subthreshold regime, the leaky integrate-and-fire model with stochastic input (white
noise) can be mapped approximately onto an escape noise model with a certain escape rate
f (Plesser and Gerstner, 2000). In this section, we motivate the mapping and the choice
of f.

In the absence of a threshold, the membrane potential of an integrate-and-fire model
has a Gaussian probability distribution around the noise-free reference trajectory ug(z). If
we take the threshold into account, the probability density at u = 1 of the exact solution
vanishes, since the threshold acts as an absorbing boundary; see Eq. (8.44). Nevertheless,
in a phenomenological model, we can approximate the probability density near u = ¥ by
the “free” distribution (i.e., without the threshold)

: [uo () — O]

Prob{u reaches ¥ in [t,7 + A]} o< At exp {2<AL¢2(t)>} , (9.28)
where uo(t) is the noise-free reference trajectory. The idea is illustrated in Fig. 9.10. We
note that in a leaky integrate-and-fire model with colored noise (as opposed to white noise)
in the input the density at threshold is not zero.

We have seen in Eq. (8.13) that the variance (Au?(t)) of the free distribution rapidly
approaches a constant value 6> /2 where o scales with the strength of the diffusive input.
We therefore replace the time-dependent variance 2(Au(t)?) by its stationary value 2. The
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i/ p(u,t)

uo(t)

0 i t

Fig. 9.10 The distribution of the membrane potential around the noise-free reference trajectory ug(t)
is given by p(u,t). Att = ty, where the reference trajectory has a discontinuity, the distribution of the
membrane potential is shifted instantaneously across the threshold. The probability of firing at #; is
given by the shaded surface under the distribution.

right-hand side of Eq. (9.28) is then a function of the noise-free reference trajectory only.
To transform the left-hand side of Eq. (9.28) into an escape rate, we divide both sides by Az.
The firing intensity is thus

a12
Flug— ) = %1 exp {—W} . (9.29)

- o?

The factor in front of the exponential has been split into a constant parameter ¢; > 0 and
the time constant 7, of the neuron in order to show that the escape rate has units of 1 over
time. Equation (9.29) is the well-known Arrhenius formula for escape across a barrier of
height (1 — ug)? in the presence of thermal energy 62 (van Kampen, 1992).

Let us now suppose that the neuron receives, at t = fp, an input current pulse which
causes a jump of the membrane trajectory by an amount Au > 0; see Fig. 9.10. In this
case the Gaussian distribution of membrane potentials is shifted instantaneously across
the threshold so that there is a nonzero probability that the neuron fires exactly at #y. In
other words, the firing intensity p(z) = f[uo(t) — ¥] has a § peak at # = #y. The escape
rate of Eq. (9.29), however, cannot reproduce this 6 peak. More generally, whenever the
noise-free reference trajectory increases with slope iy > 0, we expect an increase of the
instantaneous rate proportional to iy, because the tail of the Gaussian distribution drifts
across the threshold; see Eq. (8.35). In order to take the drift into account, we generalize
Eq. (9.29) and study

2
£ (uo, 1i0) = (;l + Z['fto]+> exp {—W} , (9.30)

n o?

where 1ip = dug/dr and [x]+ = x for x > 0 and zero otherwise. We call Eq. (9.30) the
Arrhenius&Current model (Plesser and Gerstner, 2000).
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Fig. 9.11 The interval distributions P;(¢|0) for diffusive noise (solid line) and Arrhenius&Current
escape noise (dashed line) are nearly identical. The input potential is the same as in Fig. 8.10. Taken
from Plesser and Gerstner (2000).

‘We emphasize that the right-hand side of Eq. (9.30) depends only on the dimensionless
variable

9.31)

and its derivative X. Thus the amplitude of the fluctuations ¢ define a “natural” voltage
scale. The only relevant variable is the momentary distance of the noise-free trajectory
from the threshold in units of the noise amplitude ©. A value of x = —1 implies that the
membrane potential is one ¢ below threshold. A distance of u — ¥ = —10mV at high
noise (e.g., 0 = 10mV) is as effective in firing a cell as a distance of 1 mV at low noise
(o =1mV).

Example: Comparison of diffusion model and Arrhenius&Current escape rate

To check the validity of the arguments that led to Eq. (9.30), let us compare the inter-
val distribution generated by the diffusion model with that generated by the Arrhe-
nius&Current escape model. We use the same input potential uy(7) as in Fig. 8.10.
We find that the interval distribution for the diffusive white noise model (derived from
stochastic spike arrival; see Chapter 8) and that for the Arrhenius&Current escape model
are nearly identical; see Fig. 9.11. Thus the Arrhenius&Current escape model yields an
excellent approximation to the diffusive noise model.

Even though the Arrhenius&Current model has been designed for subthreshold stim-
uli, it also works remarkably well for superthreshold stimuli. An obvious shortcom-
ing of the escape rate (9.30) is that the instantaneous rate decreases with u for u > ¥.
The superthreshold behavior can be corrected if we replace the Gaussian exp(—x?) by
2 exp(—x?)/[1 +erf(—x)] (Herrmann and Gerstner, 2001). The subthreshold behavior
remains unchanged compared to Eq. (9.30) but the superthreshold behavior of the escape
rate f becomes linear.
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9.4.2 Stochastic resonance

Noise can — under certain circumstances — improve the signal transmission properties of
neuronal systems. In most cases there is an optimum for the noise amplitude which has
motivated the name stochastic resonance for this rather counterintuitive phenomenon. In
this section we discuss stochastic resonance in the context of noisy spiking neurons.

We study the relation between an input /(f) to a neuron and the corresponding output
spike train S(1) = 7 6(r — /). In the absence of noise, a subthreshold stimulus /(r) does
not generate action potentials so that no information on the temporal structure of the stim-
ulus can be transmitted. In the presence of noise, however, spikes do occur. As we have
seen in Eq. (9.30), spike firing is most likely at moments when the normalized distance
|x| = |(u — ¥) /0| between the membrane potential and the threshold is small. Since the
escape rate in Eq. (9.30) depends exponentially on x?, any variation in the membrane
potential ug(z) that is generated by the temporal structure of the input is enhanced; see
Fig. 9.8. On the other hand, for very large noise (G — o), we have x> — 0, and spike firing
occurs at a constant rate, irrespective of the temporal structure of the input. We conclude
that there is some intermediate noise level where signal transmission is optimal.

The optimal noise level can be found by plotting the signal-to-noise ratio as a function
of noise. Even though stochastic resonance does not require periodicity (see, e.g., Collins
et al., 1996), it is typically studied with a periodic input signal such as

194(r) = Iy + 1 cos(Q1) . 9.32)
For t — 7 >> 1,,, the membrane potential of the noise-free reference trajectory has the form
uo(t) = theo +uy cos(Qt + 1), (9.33)

where u; and ¢; are the amplitude and phase of its periodic component. To quantify the
signal transmission properties, a long spike train is studied and the signal-to-noise ratio
(SNR) is computed. The signal . is measured as the amplitude of the power spectral
density of the spike train evaluated at frequency Q, i.e., ¥ = Z(Q). The noise level A is
usually estimated from the noise power Ppyisson Of a Poisson process with the same number
of spikes as the measured spike train, i.e., A4 = Ppyisson. Figure 9.12 shows the signal-to-
noise ratio ./ /4" of a periodically stimulated integrate-and-fire neuron as a function of the
noise level 0. Two models are shown, namely, diffusive noise (solid line) and escape noise
with the Arrhenius&Current escape rate (dashed line). The two curves are rather similar
and exhibit a peak at

2
~3

opt

o (O — ). (9.34)

Since 62 = 2(Au?) and v/2-2/3 ~ 1, signal transmission is optimal if the stochastic fluctu-
ations of the membrane potential have an amplitude

24/ (Au?) = 9 — Ue, . (9.35)
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0 1 Noise

Fig. 9.12 Signal-to-noise ratio (SNR) for the transmission of a periodic signal as a function of the
noise level 6 /(9 —ug). Solid line: Diffusion model. Dashed line: Arrhenius&Current escape model.
Taken from Plesser and Gerstner (2000).

An optimality condition similar to (9.34) holds over a wide variety of stimulation param-
eters (Plesser, 1999). We will come back to the signal transmission properties of noisy
spiking neurons in Chapter 15.

Example: Extracting oscillations

The optimality condition (9.34) can be fulfilled by adapting either the left-hand side
or the right-hand side of the equation. Even though it cannot be excluded that a neuron
changes its noise level so as to optimize the left-hand side of Eq. (9.34) this does not
seem very likely. On the other hand, it is easy to imagine a mechanism that optimizes the
right-hand side of Eq. (9.34). For example, an adaptation current could change the value
of ¥, or synaptic weights could be increased or decreased so that the mean potential u..
is in the appropriate regime.

We apply the idea of an optimal threshold to a problem of neural coding. More specif-
ically, we study the question of whether an integrate-and-fire neuron or an SRM neuron
is sensitive only to the total number of spikes that arrive in some time window 7, or also
to the relative timing of the input spikes. To do so, we compare two different scenarios
of stimulation. In the first scenario, input spikes arrive with a periodically modulated
rate,

Vin(t) = v+ v; cos(Qt) (9.36)

with 0 < v; < vp. Thus, even though input spikes arrive stochastically, they have some
inherent temporal structure, since they are generated by an inhomogeneous Poisson pro-
cess. In the second scenario, input spikes are generated by a homogeneous (that is, sta-
tionary) Poisson process with constant rate Vvp. In a large interval 7 > Q! however,
we expect in both cases a total number of vy T input spikes.

Stochastic spike arrival leads to a fluctuating membrane potential with variance A> =
(Au?). If the membrane potential hits the threshold an output spike is emitted. If stimulus
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1 is applied during the time 7', the neuron emits a certain number of action potentials,
say n(l). If stimulus 2 is applied it emits n(?) spikes. It is found that the spike count
numbers n(!) and n(®) are significantly different if the threshold is in the range

Ueo 1/ (A1) < B < oo + 31/ (Au2) . (9.37)

We conclude that a neuron in the subthreshold regime is capable of transforming a tem-
poral code (amplitude v; of the variations in the input) into a spike count code (Kempter
et al., 1998). Such a transformation plays an important role in the auditory pathway
(Miller and Mark, 1992; Konishi, 1993; Kempter ef al., 1999b).

9.5 Summary

Neuronal noise in the output can be described as a stochastic firing intensity, or escape rate,
which depends on the momentary distance of the membrane potential from the threshold.
The concept of escape rate can be applied to a large class of generalized integrate-and-fire
models. An SRM with exponential escape rate is particularly attractive for several rea-
sons. First, experimental data suggest an exponential escape rate (Fig. 9.3). Second, a wide
spectrum of subthreshold effects can be captured by the linear filters of the SRM (Chap-
ter 6). Third, when driven with a noisy input, nonlinear neuron models such as the AdEx
can be well approximated by the SRM with exponential escape noise (Fig. 9.9). Fourth,
the explicit formulas for the likelihood of an observed spike train (Section 9.2) enable a
rapid fit of the neuron model to experimental data, using the concept of Generalized Linear
Models to be discussed in the next chapter.

Escape noise gives rise to variability in spike firing even if the input is perfectly known.
It can therefore be linked to intrinsic noise sources such as channel noise. However, more
generally, any unknown component of the input which may, for example, arise from stochas-
tic spike arrival can also be approximated by an appropriate escape rate function (Sec-
tion 9.4). Thus the escape rate provides a phenomenological noise model that summarizes
effects of biophysical channel noise as well as stochastic input.

Literature

The Spike Response Model with exponential escape noise was introduced in Gerstner and
van Hemmen (1992) and Gerstner (1995), but closely related models had already been
applied to neuronal data by Brillinger (1988) and have an obvious link to Generalized
Linear Models, which were used in statistics as early as the 1970s (Nelder and Wederburn,
1972) and have been repeatedly applied to neuronal data (Truccolo et al., 2005; Pillow
et al., 2008). The choice of an exponential escape rate for experimental data has been
demonstrated by Jolivet et al. (2006).

The term escape noise has been chosen in analogy to the Arrhenius formula which
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describes the escape of a particle (or a chemical process) across an energy barrier in the
presence of thermal energy (van Kampen, 1992).

The relation of diffusive noise in the input to escape noise has been studied by Plesser
and Gerstner (2000), Herrmann and Gerstner (2001) and Mensi et al. (2011). Stochastic
resonance has been a popular topic of research for many years, starting in 1989 (McNamara
and Wiesenfeld, 1989; Douglass et al., 1993; Longtin, 1993; Collins et al., 1996). A nice
review on stochastic resonance can be found in Gammaitoni et al. (1998).

Exercises

1. Integrate-and-fire model with linear escape rates. Consider a leaky integrate-and-fire neuron
with linear escape rate,

pi(elf) = B lu(tl?) — 0] 9.38)

(a) Start with the non-leaky integrate-and-fire model by considering the limit of T, — oo. The
membrane potential of the model is then

~ Lot A
u(t|l)—ur+6/f I()dr". (9.39)

Assume constant input, set u = 0 and calculate the hazard and the interval distribution.
(b) Consider the leaky integrate-and-fire model with time constant T and constant input I.
Determine the membrane potential, the hazard, and the interval distribution.

2. Likelihood of a spike train. In an in-vitro experiment, a time-dependent current 1(t) was
injected into a neuron for a time 0 <t < T and four spikes were observed at times 0 < t' <
<<t <T.

(a) What is the likelihood that this spike train could have been generated by a leaky integrate-
and-fire model with linear escape rate defined in Eq. (9.38)?

(b) Rewrite the likelihood in terms of the interval distribution and hazard of time-dependent
renewal theory.
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Estimating parameters of probabilistic
neuron models

It is helpful to break neural data analysis into two basic problems. The “encoding” problem
concerns how information is encoded in neural spike trains: can we predict the spike trains
of a neuron (or population of neurons), given an arbitrary synaptic input, current injection,
or sensory stimulus? Conversely, the “decoding” problem concerns how much we can learn
from the observation of a sequence of spikes: in particular, how well can we estimate the
stimulus that gave rise to the spike train?

The problems of encoding and decoding are difficult both because neural responses are
stochastic and because we want to identify these response properties given any possible
stimulus in some very large set (e.g., all images that might occur in the world), and there
are typically many more such stimuli than we can hope to sample by brute force. Thus
the neural coding problem is fundamentally statistical: given a finite number of samples of
noisy physiological data, how do we estimate, in a global sense, the neural codebook?

This basic question has taken on a new urgency as neurophysiological recordings allow
us to peer into the brain with ever greater facility: with the development of fast computers,
inexpensive memory, and large-scale multineuronal recording and high-resolution imaging
techniques, it has become feasible to directly observe and analyze neural activity at a level
of detail that was impossible in the twentieth century. Experimenter now routinely record
from hundreds of neurons simultaneously, providing great challenges for data analysis by
computational neuroscientists and statisticians. Indeed, it has become clear that sophisti-
cated statistical techniques are necessary to understand the neural code: many of the key
questions cannot be answered without powerful statistical tools.

This chapter describes statistical model-based techniques that provide a unified approach
to both encoding and decoding. These statistical models can capture stimulus dependencies
as well as spike history and interneuronal interaction effects in population of spike trains,
and are intimately related to the generalized integrate-and-fire models discussed in previous
chapters.

In Section 10.1, we establish the notation that enables us to identify relevant model
parameters and introduce the concept of parameter optimization in a linear model. We
then leave the realm of linear models and turn to the models that we have discussed in
preceding chapters (e.g., the Spike Response Model with escape noise in Chapter 9) where
spike generation is stochastic and nonlinear.
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In Section 10.2, we describe the same neuron models of spike trains in the slightly more
abstract language of statistics. The likelihood of a spike train given the stimulus plays a
central role in statistical models of encoding. As we have seen in Chapter 9, the stochastic-
ity introduced by “escape noise” in the Spike Response Model (SRM) or other generalized
integrate-and-fire models enables us to write down the likelihood that an observed spike
train could have been generated by the neuron model. Likelihood-based optimization meth-
ods for fitting these neuron models to data allow us to predict neuronal spike timing for
future, unknown stimuli. Thus, the SRM and other generalized integrate-and-fire models
can be viewed as encoding models. In Chapter 11 we shall see that the same models can
also be used to perform optimal decoding.

The emphasis of this chapter is on likelihood-based methods for model optimization.
The likelihood-based optimization methods are computationally tractable, due to a key
concavity property of the model likelihood (Paninski, 2004). However, likelihood is just
one of several quantities that can be chosen to compare spike trains, and other measures to
quantify the performance of models can also be used. In Section 10.3 we review different
performance measures for the “goodness-of-fit” of a model. In particular, we present the
notion of “spike train similarity” and the “time rescaling theorem” (Brown et al., 2002).

Finally, in Section 10.4 we apply the ideas developed in this chapter to adaptively choose
the optimal stimuli for characterizing the response function.

10.1 Parameter optimization in linear and nonlinear models

Before we turn to the statistical formulation of models of encoding and decoding, we need
to introduce the language of statistics into neuron modeling. In particular, we will define
what is meant by convex problems, optimal solutions, linear models and generalized linear
models.

When choosing a neuron model for which we want to estimate the parameters from data,
we must satisfy three competing desiderata:

(1) The model must be flexible and powerful enough to fit the observed data. For exam-
ple, a linear model might be easy to fit, but not powerful enough to account for the
data.

(ii) The model must be tractable: we need to be able to fit the model given the modest
amount of data available in a physiological recording (preferably using modest computa-
tional resources as well); moreover, the model should not be so complex that we cannot
assign an intuitive functional role to the inferred parameters.

(iii) The model must respect what is already known about the underlying physiology
and anatomy of the system; ideally, we should be able to interpret the model parameters
and predictions not only in statistical terms (e.g., confidence intervals, significance tests)
but also in biophysical terms (membrane noise, dendritic filtering, etc.). For example, with
a purely statistical “black box” model we might be able to make predictions and test their
significance, but we will not be able to make links to the biophysics of neurons.

While in general there are many varieties of encoding models that could conceivably
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Fig. 10.1 Measurement of membrane filter. (a) Schematic of the linear membrane filter k in discrete
time. (b) Matrix of temporal inputs (schematic). At each moment in time, the last K time steps of the
input current /; serve as an input vector. Rows of the matrix correspond to different input samples.

satisfy these three conditions, in this chapter we will mainly focus on the SRM with escape
noise (Chapter 9). In a more general setting (see Chapter 11), the linear filter can be inter-
preted not just as local biophysical processes within the neuron, but as a summary of the
whole signal processing chain from sensory inputs to the neuron under consideration. In
such a general setting, the SRM may also be seen as an example of a “generalized linear”
model (GLM) (Paninski, 2004; Truccolo et al., 2005). In the following two subsections, we
review linear and Generalized Linear Models from the point of view of neuronal dynamics:
how is a stimulus /(¢) encoded by the neuron?

10.1.1 Linear models

Let us suppose that an experimenter injects, with a first electrode, a time-dependent current
I(¢) in an interval 0 < ¢ < T while recording with a second electrode the membrane voltage
u**P(t). The maximal amplitude of the input current has been chosen small enough for the
neuron to stay in the subthreshold regime. We may therefore assume that the voltage is
well described by our linear model

u(t) = Aw K(s)I(t — ) ds + trest; (10.1)

see Section 1.3.5. In order to determine the filter k that describes the linear properties of the
experimental neuron, we discretize time in steps of d¢ and denote the voltage measurement
and injected current at time ¢ by #; * and I, respectively. Here the time subscript ¢ € Z is
an integer time step counter. We set K = s™** /dr where max(s) € N and introduce a vector

k= (x(dt), k(2dr),..., k(Kdt)) (10.2)

which describes the time course k in discrete time; see Fig. 10.1a. Similarly, the input
current / during the last K time steps is given by the vector

x[:(1171,1172,...7I[7K)dt. (103)
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The discrete-time version of the integral equation (10.1) is then a simple scalar product

K
=Y kil 1At + et = kX, + tregt (10.4)
I=1
Note that k is the vector of parameters ky,ks,...,kx that need to be estimated. In the lan-

guage of statistics, Eq. (10.4) is a linear model because the observable u, is linear in the
parameters. Moreover, u, is a continuous variable so that the problem of estimating the
parameters falls in the class of linear regression problems. More generally, regression
problems refer to the prediction or modeling of continuous variables whereas classifica-
tion problems refer to the modeling or prediction of discrete variables.

To find a good choice of parameters k, we compare the prediction u, of the model equa-
tion (10.4) with the experimental measurement u;*. In a least-square error approach, the
components of the vector k will be chosen such that the squared difference between model
voltage and experimental voltage

T
Ek)= Y (4™ —u)’ (10.5)
1=K+1
is minimal. An important insight is the following. For any model that is linear in the param-
eters, the function E in Eq. (10.5) is quadratic and convex in the parameters k of the model.
Therefore

(i) the function E has no non-global local minima as a function of the parameter vector
k (in fact, the set of minimizers of E forms a linear subspace in this case, and simple
conditions are available to verify that E has a single global minimum, as discussed below);

(ii) the minimum can be found either numerically by gradient descent or analytically by
matrix inversion.

While the explicit solution is only possible for linear models, the numerical gradient
descent is possible for all kinds of error functions E and yields a unique solution if the
error has a unique minimum. In particular, for all error functions which are convex, gradient
descent converges to the optimal solution (Fig. 10.2) — and this is what we will exploit in
Section 10.2.

Example: Analytical solution

For the analytical solution of the least-square optimization problem, defined by Egs.
(10.4) and (10.5), it is convenient to collect all time points u#;, K+ 1 < < T into a

single vector u = (ug1,ux+2,.-.,ur) which describes the membrane voltage of the
model. Similarly, the observed voltage in the experiment is summarized by the vector
U = (up?|,...,u7"). Furthermore, let us align the observed input vectors x into a

matrix X. More precisely, the matrix has T — K rows consisting of the vector x;; see Fig.
10.1b. With this notation, Eq. (10.4) can be written as a matrix equation

u=Xk" 4 e, (10.6)
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Fig. 10.2 Convex function and global minimum. (a) A quadratic function (left) and an arbitrary con-
vex function (right). A convex function is curved upward so that any straight line (dashed) connecting
two points on the curve stays above the curve. A convex function cannot have a non-global minimum.
(b) A non-convex function without (left) and with (right) a non-global minimum. Gradient descent
refers to a change of the parameter & that leads to a downward move (arrow) on the error surface. In
the case on the right, a gradient-descent method can get stuck in the local minimum.

where ures 18 a vector with all components equal to ugs;. We suppose that the value of
urest has already been determined in an earlier experiment.

We search for the minimum of Eq. (10.5), defined by Vi E = 0 (where Vi E denotes
the gradient of E with respect to k), which gives rise a single linear equation for each
component of the parameter vector k, i.e., a set of K linear equations. With our matrix
notation, the error function is a scalar product

E(k) = [u™ — Xk — trest] " - [P — X Kk — thre] (10.7)
and the unique solution of the set of linear equations is the parameter vector
ks = (XTX) 7 XT (U — treq), (10.8)

assuming the matrix (XTX) is invertible. (If this matrix is non-invertible, then a unique
minimum does not exist.) The subscript highlights that the parameter ky s has been deter-
mined by least-square optimization.

10.1.2 Generalized Linear Models

The above linearity arguments not only work in the subthreshold regime, but can be
extended to the case of spiking neurons. In the deterministic formulation of the Spike
Response Model, the membrane voltage is given as

u(t) = /0 T 1(s)S(t — s)ds + /0 Rt — 5)ds -+ trest, (10.9)
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where S(t) = X ;0(t —t/) is the spike train of the neuron; see Eq. (1.22) or (9.1).
Similarly to the passive membrane, the input current enters linearly with a membrane
filter k. Similarly, past output spikes #/ < ¢ enter linearly with a “refractory kernel” or
“adaptation filter” 1. Therefore, spike history effects are treated in the SRM as linear con-
tributions to the membrane potential. The time course of the spike history filter 7 can
therefore be estimated analogously to that of x.

Regarding the subthreshold voltage, we can generalize Eqs. (10.2)—(10.4). Suppose that
the spike history filter 1 extends over a maximum of J time steps. Then we can introduce
a new parameter vector

k= (x(dt),x(2dt),...,k(Kdr),n(dr),n(2de),...,n(Jdt), ures) (10.10)

which includes both the membrane filter x and the spike history filter 1. The spike train in
the last J time steps is represented by the spike count sequence n;_1,n;—3,...,n;—j, Where
n; € {0, 1}, and included into the “input” vector

X — (Itfldt,ltfzdt7 e ,Ithdt,ntfl,nt72, BRI (T 1). (10.11)
The discrete-time version of the voltage equation in the SRM is then again a simple scalar

product

K
ki j+ > ki—dt + treqt =k - ;. (10.12)
j=1 k=1

J
U =
Thus, the membrane voltage during the interspike intervals is a linear regression problem
that can be solved as before by minimizing the mean square error.

Spiking itself, however, is a nonlinear process. In the SRM with escape rate, the firing
intensity is

p(t) = flu(t) = 0) = flk-x; = 9). (10.13)

We have assumed that the firing threshold is constant, but this is no limitation since, in
terms of spiking, any dynamic threshold can be included into the spike-history filter 7.

We emphasize that the firing intensity in Eq. (10.13) is a nonlinear function of the param-
eters k and b that we need to estimate. Nevertheless, rapid parameter estimation is still
possible if the function f has properties that we will identify in Section 10.2. The reason
is that in each time step firing is stochastic with an instantaneous firing intensity f that
only depends on the momentary value of the membrane potential — where the membrane
potential can be written as a linear function of the parameters. This insight leads to the
notion of Generalized Linear Models (GLM). For an SRM with exponential escape noise
p(t) = fu(t) — ) = poexp(u(t) — ¥) the likelihood of a spike train

L0t ®)) = p(e) pr) - pe) exp |- [ p(oas] . 1014

which we have already defined in Eq. (9.10), is a log-concave function of the parameters
(Paninski, 2004); i.e., the loglikelihood is a concave function. We will discuss this result in
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Fig. 10.3 SRM revisited. (a) The SRM takes as input a time-dependent current /(¢) and generates a
spike train S(z) at the output. The parameters of the model control the shape of the filters k, 6; and
7. (b) If the escape rate f(u — ©) is exponential and the parameters k enter linearly into the voltage
equation u and the threshold ¢, then the likelihood p that a specific spike train is generated by the
model is a concave (i.e., downward curving) function of the parameters (Paninski, 2004).

the next section as it is the fundamental reason why parameter optimization for the SRM
is computationally efficient (Fig. 10.3).

GLMs are fundamental tools in statistics for which a great deal of theory and computa-
tional methods are available. In what follows we exploit the elegant mathematical proper-
ties of GLMs.

10.2 Statistical formulation of encoding models

Let us denote the observed spike train data by D. In general, D could represent measure-
ments from a population of neurons. To keep the arguments simple, we focus for the
moment on a single neuron, but at the end of the section we will extend the approach
to a population of interacting neurons. If the time bins are chosen smaller than the absolute
refractory period, the discretized spike train is described by a sequence of scalar variables
nyinaninterval 0 <t < T

D={ny,nm,...,nr} (10.15)

see Fig. 9.6. If time bins are large, spike counts can take values larger than 1.

A neural “encoding model” is a model that assigns a conditional probability, p(D|x), to
any possible neural response D given a stimulus x. The vector x; can include the momentary
stimulus presented at time ¢, or more generally the concatenated spatio-temporal stimulus
history up to time ¢. Examples have been given in Section 10.1.

As emphasized in the introduction to this chapter, it is not feasible to directly measure
this probability p(D|x) for all stimulus-response pairs (x,D), simply because there are
infinitely many potential stimuli. We therefore hypothesize some encoding model,

p(Dlx,0). (10.16)

Here 6 is a short-hand notation for the set of all model parameters. In the examples of the
previous section, the model parameters are 6 = {k,b}.
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Our aim is to estimate the model parameters 6 so that the model “fits” the observed data
D. Once 6 is in hand we may compute the desired response probabilities as

p(Dlx) =~ p(D|x,8), (10.17)

i.e., knowing 6 allows us to interpolate between the observed (noisy) stimulus-response
pairs, in order to predict the response probabilities for novel stimuli x for which we have
not yet observed any responses.

10.2.1 Parameter estimation

How do we find a good estimate for the parameters 0 for a chosen model class? The general
recipe is as follows. The first step is to introduce a model that makes sense biophysically,
and incorporates our prior knowledge in a tractable manner. Next we write down the likeli-
hood of the observed data given the model parameters, along with a prior distribution that
encodes our prior beliefs about the model parameters. Finally, we compute the posterior
distribution of the model parameters given the observed data, using Bayes’ rule, which
states that

p(8|D) < p(D|6)p(6); (10.18)

the left-hand side is the desired posterior distribution, while the right-hand side is just the
product of the likelihood and the prior.

In the current setting, we need to write down the likelihood p(D|X,k) of the observed
spike data D given the model parameter k and the observed set of stimuli summarized in
the matrix X, and then we may employ standard likelihood optimization methods to obtain
the maximum likelihood (ML) or maximum a posteriori (MAP) solutions for k, defined by

ML: ky = argmax, {p(D|X ,k)}, (10.19)
MAP:  fovap = argmax, { p(D|X k) p(k)}, (10.20)

where the maximization runs over all possible parameter choices.
We assume that spike counts per bin follow a conditional Poisson distribution, given

p(t):
ny ~ Poiss[p(¢)dt]; (10.21)

see text and exercises of Chapter 7. For example, with the rate parameter of the Poisson
distribution given by a GLM or SRM model p(¢) = f(k-x;), we have

{ [f (k -x, )de]™
(ne)!

Here I1; denotes the product over all time steps. We recall that, by definition, n,! = 1 for
n, =0.

Our aim is to optimize the parameter k. For a given observed spike train, the spike count
numbers #, are fixed. In this case, (df)" /(n;)! is a constant which is irrelevant for the

p(DIX.k) =]

t

exp[—f(x; -k)dt}} . (10.22)
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parameter optimization. If we work with a fixed time step df and drop all units, we can
therefore reshuffle the terms and consider the logarithm of the above likelihood

log p(D|X k) = co+ Y, (ndog f(k-x;) — f(x; -k)dr) . (10.23)

If we choose the time step dr shorter than the half-width of an action potential, say 1 ms,
the spike count variable n, can only take the values zero or 1. For small dt, the likelihood
of Eq. (10.22) is then identical to that of the SRM with escape noise, defined in Chapter 9;
see Eqgs. (9.10) and (9.15)—(9.17).

We don’t have an analytical expression for the maximum of the likelihood defined in
Eq. (10.22), but nonetheless we can numerically optimize this function quite easily if we
are willing to make two assumptions about the nonlinear function f(.). More precisely, if
we assume that

(i) f(u) is a convex (upward-curving) function of its scalar argument u, and

(ii) log f(u) is concave (downward-curving) in u,
then the log likelihood above is guaranteed to be a concave function of the parameter k,
since in this case the log-likelihood is just a sum of concave functions of k (Paninski, 2004).

This implies that the likelihood has no non-global maximum (also called local max-
imum). Therefore the maximum likelihood parameter kewir, may be found by numerical
ascent techniques; see Fig. 10.2. Functions f(.) satisfying these two constraints are easy to
think of: for example, the standard linear rectifier and the exponential function both work.

Fitting model parameters proceeds as follows: we form the (augmented) matrix X where
each row is now

Xy = (171[71dt71t72dt, e ,Ithdt,ntfl,nt727 . ,ntf‘]) . (10.24)
Similarly, the parameter vector is in analogy to Eq. (10.10)
k= (b,x(dt), x(2dt),...,x(Kdt),n(dr),n(2ds),...,n(Jdt)); (10.25)

here b = uest — ¥ is a constant offset term which we want to optimize.
We then calculate the log-likelihood
log p(DIX k) = Y (n/log f(X; -k) — f(X; - k)dr) (10.26)
t
and compute the ML or maximum a posteriori (MAP) solution for the model parameters
k by a concave optimization algorithm. Note that, while we still assume that the condi-
tional spike count n, within a given short time bin is drawn from a one-dimensional Poiss
(p(¢)dr) distribution given p(t), the resulting model displays strong history effects (since
p(#) depends on the past spike trains) and therefore the output of the model, considered
as a vector of counts D = {n,}, is no longer a Poisson process, unless 11 = 0. Importantly,
because of the refractory effects incorporated by a strong negative 1 at small times, the
spike count variable n, cannot take a value larger than 1 if d¢ is in the range of one or a few
milliseconds. Therefore, we can expect that interspike intervals are correctly reproduced in
the model; see Fig. 10.5 for an example application.
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Finally, we may expand the definition of X to include observations of other spike trains,
and therefore develop GLMs not just of single spike trains, but network models of how
populations of neurons encode information jointly (Chornoboy et al., 1988; Paninski et al.,
2004; Truccolo et al., 2005; Pillow et al., 2008). The resulting model is summarized as
follows: Spike counts are conditionally Poisson distributed given p; () n;; ~ Poiss(p;()dr)
with a firing rate

pi(t) = f(ki X+ Y 8i',jni’,zj) - (10.27)
i3, j

Here, p;(¢) denotes the instantaneous firing rate of the ith cell at time ¢ and k; is the cell’s
linear receptive field including spike-history effects; see Eq. (10.25). The net effect of a
spike of neuron i onto the membrane potential of neuron i is summarized by & ;; these
terms are summed over all past spike activity ny,_; in the population of cells from which
we are recording simultaneously. In the special case that we record from all neurons in
the population, & ; can be interpreted as the excitatory or inhibitory postsynaptic potential
caused by a spike of neuron i’ a time jdt earlier.

Example: Linear regression and voltage estimation

It may be helpful to draw an analogy to linear regression here. We want to show that
the standard procedure of least-square minimization can be linked to statistical para-
meter estimation under the assumption of Gaussian noise.

We consider the linear voltage model of Eq. (10.1). We are interested in the temporal
filter properties of the neuron when it is driven by a time-dependent input /(7). Let us set
x; = (I, Li—1,...,Li_g)dt and k = (x(dr),...,k(Kdr)). If we assume that the discrete-
time voltage measurements have a Gaussian distribution around the mean predicted by
the model of Eq. (10.4), then we need to maximize the likelihood

log p(DIX k) = c1 — 2 3 (ur — (k- x))?, (10.28)
t

where X = (x,xp,...,x7) is the matrix of observed stimuli, ¢;,c;, are constants that do
not depend on the parameter k, and the sum in 7 is over all observed time bins. Maxi-
mization yields kope = (XTX)~! (3, u;x,/dt) which determines the time course of the
filter k(s) that characterizes the passive membrane properties. The result is identical to
Eq. (10.8):

kopt = ks . (10.29)

10.2.2 Regularization: maximum penalized likelihood

In the linear regression case it is well known that estimates of the components of the para-
meter vector k can be quite noisy when the dimension of k is large. The noisiness of the
estimate kypr, is roughly proportional to the dimensionality of k (the number of parameters
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Fig. 10.4 Regularization. Because of the concavity, there is only a single global maximum of the
log-likelihood which defines the optimal parameter choice kyy; . Right: Example of regularization by
a prior (dashed line) that favors a smaller value for kyiap.

in k that we need to estimate from data) divided by the total number of observed sam-
ples (Paninski, 2003). The same “overfitting” phenomenon (estimator variability increasing
with number of parameters) occurs in the GLM context. A variety of methods have been
introduced to “regularize” the estimated k, to incorporate prior knowledge about the shape
and/or magnitude of the true k to reduce the noise in l:tML. One basic idea is to restrict k to
lie within a lower-dimensional subspace; we then employ the same fitting procedure to esti-
mate the coefficients of k within this lower-dimensional basis (model selection procedures
may be employed to choose the dimensionality of this subspace (Truccolo et al., 2005)).
A slightly less restrictive approach is to maximize the posterior

p(k|X,D) o p(D|X ,k)p(k) (10.30)

(with k allowed to take values in the full original basis), instead of the likelihood p(D|X ,k);
here p(k) encodes our a priori beliefs about the true underlying k.
It is easy to incorporate this maxima a posteriori idea in the GLM context (Paninski,
2004): we simply maximize
log p(k|X,D) = c+logp(k) +log p(D|X ,k) (10.31)

=c+logp(k)+Y (nlog f(x; k) — f(x;-k)dr). (10.32)

Whenever log p(k) is a concave function of k, this “penalized” likelihood (where log p(k)
acts to penalize improbable values of k) is a concave function of k, and ascent-based max-
imization may proceed (with no local maximum) as before; see Fig. 10.4.

Example: Linear regression and Gaussian prior

In the linear regression case, the computationally simplest prior is a zero-mean
Gaussian, logp(k) = ¢ —k"Ak/2, where A is a positive definite matrix (the inverse
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covariance matrix). The Gaussian prior can be combined with the Gaussian noise model
of Eq. (10.28). Maximizing the corresponding posterior analytically (Sahani and Linden,
2003; Smyth et al., 2003) then leads directly to the regularized least-square estimator

kris = (XX +A)"! <2utx,/dt> : (10.33)
t

10.2.3 Fitting generalized integrate-and-fire models to data

Suppose an experimenter has injected a time-dependent current I(¢) into a neuron and
has recorded with a second electrode the voltage u*P(z) of the same neuron. The voltage
trajectory contains spikes S(t) = ¥ 8(t — /) with firing times (W 12 t™) The natural
approach would be to write down the joint likelihood of observing both the spike times and
the subthreshold membrane potential (Paninski et al., 2005). A simpler approach would
be to maximize the likelihood of observing the spike separately from the likelihood of
observing the membrane potential.

Given the input I(¢) and the spike train S(¢), the voltage of an SRM is given by Eq.
(10.9) and we can adjust the parameters of the filter k and 1 so as to minimize the squared
error Eq. (10.5). We now fix the parameters for the membrane potential and maximize the
likelihood of observing the spike times given our model voltage trajectory u(z). We insert
u(t) into the escape rate function p (1) = f(u(t) — ¥(¢)) which contains the parameters of
the threshold

B(1) = Do+ / 01 (5)S( — s)ds. (10.34)
0
We then calculate the log-likelihood
log p(D|X k) = c+ Y (n;log f(X; - k) — f(X; -k)dr) (10.35)
t

and compute the ML or maximum a posteriori (MAP) solution for the model parameters
k (which are the parameters of the threshold — the subthreshold voltage parameters are
already fixed) by an optimization algorithm for concave functions.

Fig. 10.5 shows an example application. Both voltage in the subthreshold regime and
spike times are nicely reproduced. Therefore, we can expect that interspike intervals are
correctly reproduced as well. In order to quantify the performance of neuron models, we
need to develop criteria of “goodness-of-fit” for subthreshold membrane potential, spike
timings, and possibly higher-order spike-train statistics. This is the topic of Section 10.3;
we will return to similar applications in the next chapter.

10.2.4 Extensions (*)

The GLM encoding framework described here can be extended in a number of important
directions. We briefly describe two such directions here.
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First, as we have described the GLM above, it may appear that the model is restricted to
including only linear dependencies on the stimulus x;, through the k - x; term. However, if
we modify our input matrix X once again, to include nonlinear transformations .%;(x) of
the stimulus x, we may fit nonlinear models of the form

p(t)=f (Za ,-fij(x)> (10.36)

efficiently by maximizing the log-likelihood log p(D|X,a) with respect to the weight para-
meter a (Wu et al., 2006; Ahrens et al., 2008). Mathematically, the nonlinearities .%;(x)
may take essentially arbitrary form; physiologically speaking, it is clearly wise to choose
Zj(x) to reflect known facts about the anatomy and physiology of the system (e.g., .%(x)
might model inputs from a presynaptic layer whose responses are better-characterized than
are those of the neuron of interest (Rust ez al., 2006)).

Second, in many cases it is reasonable to include terms in X that we may not be able
to observe or calculate directly (e.g., intracellular noise, or the dynamical state of the net-
work); fitting the model parameters in this case requires that we properly account for these
“latent,” unobserved variables in our likelihood. While inference in the presence of these
hidden parameters is beyond the scope of this chapter, it is worth noting that this type of
model may fit tractably using generalizations of the methods described here, at the cost
of increased computational complexity, but the benefit of enhanced model flexibility and
realism (Smith and Brown, 2003; Yu et al., 2009; Vidne et al., 2012).

Example: Estimating spike triggered currents and dynamic threshold

In Fig. 10.1a, we have suggested estimating the filter k(s) by extracting its values
kj = x(jdt) at discrete equally spaced time steps: the integral [ k(s)I(r —s)ds =
Zle kI, jdt is linear in the K parameters.

However, the observables remain linear in the parameters (k;) if we set k(s) = 24-21 k;
exp(—s/7;) with fixed time constants, e.g., T; = 10/ ms. Again, the integral [;” & (s)
I(t—s)ds = 2‘}:1 kj |y exp(—s/7;)I(t — s)ds is linear in the parameters. The exponen-
tials play the role of “basis functions” F;.

Similarly, the threshold filter 9 (s) or the spike-afterpotential 1 (s) can be expressed
with basis functions. A common choice is to take rectangular basis functions F; which
take a value of unity on a finite interval [¢;,7;;1]. Exponential spacing 7; = 2/~ 'ms of
time points allows us to cover a large time span with a small number of parameters.
Regular spacing leads back to the naive discretization scheme.

10.3 Evaluating goodness-of-fit

No single method provides a complete assessment of goodness-of-fit; rather, model fitting
should always be seen as a loop, in which we start by fitting a model, then examine the
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Fig. 10.5 Comparing models with intracellular recordings. (a) A noisy time-dependent current is
used to stimulate the neurons experimentally (dashed line corresponds to zero current). (b) Recording
from the neuron (thin black line) shows membrane potential fluctuations and action potentials. Sim-
ulating an SRM (thick black line) with the same current and using parameters previously optimized
on a different dataset shows similar membrane potential fluctuations (inset) and action potentials.
Some of the spikes are missed, some are added, but most coincide with the recorded ones. (c) Mul-
tiple repeated stimulations with the same current shows the intrinsic variability of neural responses
(the first nine rows are recorded action potentials indicated by thick black ticks). The variability is
matched by the model (the last nine rows are model action potentials). Data and models from Mensi
et al. (2012).

results, attempt to diagnose any model failures, and then improve our model accordingly.
In the following, we describe different methods for assessing the goodness-of-fit.

Before beginning with specific examples of these methods, we note that it is very impor-
tant to evaluate the goodness-of-fit on data that was not used for fitting. The part of the
data used for fitting model parameters is called the training set and the part of the data
reserved to evaluate the goodness-of-fit is called the test set. Data in the test set is said to
be predicted by the model, while it is simply reproduced in the training set. By simply
adding parameters to the model, the quality of the fit on the training set increases. Given a
sufficient number of parameters, the model might be able to reproduce the training set per-
fectly, but that does not mean that data in the test set is well predicted. In fact it is usually
the opposite: overly complicated models that are “overfit” on the training data (i.e., which
fit not only the reproducible signal in the training set but also the noise) will often do a bad
job generalizing and predicting new data in the test set. Thus in the following we assume
that the goodness-of-fit quantities are computed using “cross-validation”: parameters are
estimated using the training set, and then the goodness-of-fit quantification is performed
on the test set.
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10.3.1 Comparing spiking membrane potential recordings

Given a spiking membrane potential recording, we can use traditional measures such as
the squared error between model and recorded voltage to evaluate the goodness-of-fit. This
approach, however, implicitly assumes that the remaining error has a Gaussian distribu-
tion (recall the close relationship between Gaussian noise and the squared error, discussed
above). Under diffusive noise, we have seen (Chapter 8) that membrane potential distri-
butions are Gaussian only when all trajectories started at the same point and none have
reached threshold. Also, a small jitter in the firing time of the action potential implies a
large error in the membrane potential, much larger than the typical subthreshold membrane
potential variations. For these two reasons, the goodness-of-fit in terms of subthreshold
membrane potential away from spikes is considered separately from the goodness-of-fit in
terms of the spike times only.

To evaluate how the model predicts subthreshold membrane potential we must compare
the average error with the intrinsic variability. To estimate the first of these two quantities,
we compute the squared error between the recorded membrane potential u; "and model
membrane potential #™°¢ with forced spikes at the times of the observed ones. Since spike
times in the model are made synchronous with the experimental recordings, all voltage
traces start at the same point. A Gaussian assumption thus justified, we can average the
squared error over all recorded times ¢ that are not too close to an action potential:

1 N
RMSEyn = || 70— 3. /. (00 —ap(0) (1037)
where € refers to the ensemble of time bins at least 5 ms before or after any spikes and
Tg, is the total number of time bins in Q. RMSE,;, has index # for “neuron” and index m
for “model.” It estimates the error between the real neuron and the model.

To evaluate the second quantity, we compare recorded membrane potential from multiple
repeated stimulations having the same stimulus. Despite the variability in spike timings, it
is usually possible to find times which are sufficiently away from a spike in any repetition
and compute the averaged squared error

RMSE 2 Ig i / (u5(0) exp(’)>2d’ (10-38)
_ - u-. — U ) :
m TQerep(NreP -1 i=1 j=1/% ! I

where €, refers to the ensemble of time bins far from the spike times in any repetition
and Tg, is the total number of time bins in £2,. Typically, 20 ms before and 200 ms after
the spike is considered sufficiently far. Note that with this approach we implicitly assume
that spike-afterpotentials have vanished 200 ms after a spike. However, as we shall see
in Chapter 11, the spike-afterpotentials can extend for more than one second, so that the
above assumption is a rather bad approximation. Because the earlier spiking history will
affect the membrane potential, the RMSE, calculated in Eq. (10.38) is an overestimate.
To quantify the predictive power of the model, we finally compute the model error with
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the intrinsic error by taking the ratio

RMSE,,
RMSER = ———. 10.39
RMSE ( )

The root-mean-squared-error ratio (RMSER) reaches 1 if the model precision is matched
with intrinsic error. When smaller than 1, the RMSER indicates that the model could be
improved. Values larger than 1 are possible because RMSE,, is an overestimate of the true
intrinsic error.

10.3.2 Spike train likelihood

The likelihood is the probability of generating the observed set of spike times S(¢) with
the current set of parameters in our stochastic neuron model. It was defined in Eq. (9.10),
which we reproduce here

T
1(s16) = [T p()s,6) exp{ /O p(s|S,6)ds}, (10.40)

tes

where we use p(t<i> IS, 6) to emphasize that the firing intensity of a spike at () depends on
both the stimulus and spike history as well as the model parameters 6.

The likelihood L" is a conditional probability density and has units of inverse time to the
power of n (where n is the number of observed spikes). To arrive at a more interpretable
measure, it is common to compare L" with the likelihood of a homogeneous Poisson model
with a constant firing intensity po = n/T, i.e., a Poisson process which is expected to
generate the same number of spikes in the observation interval T. The difference in log-
likelihood between the Poisson model and the neuron model is finally divided by the total
number n of observed spikes in order to obtain a quantity with units of “bits per spike”:

L, L(s1e)

(0] .
n g2 pgepr

(10.41)

This quantity can be interpreted as an instantaneous mutual information between the spike
count in a single time bin and the stimulus given the parameters. Hence, it is interpreted
as a gain in predictability produced by the set of model parameters 6. One advantage of
using the log-likelihood of the conditional firing intensity is that it does not require multiple
stimulus repetitions. It is especially useful to compare on a given dataset the performances
of different models: better models achieve higher cross-validated likelihood scores.

10.3.3 Time-rescaling theorem

For a spike train with spikes at 1! < ¢> < ... < " and with firing intensity p(¢|S,0), the
time-rescaling transformation t — A(¢) is defined as

f) = /0 ' p(x]S, 0)dx. (10.42)
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Fig. 10.6 Time-rescaling theorem as a goodness-of-fit. Illustrating the K-S test by plotting the cumu-
lative probability of z; as a function of quantiles. (a) Rescaling time using an inadequate model does
not result in a uniform distribution of z; as can be seen by comparing the empirical distribution (thick
black line) with the diagonal. Dashed lines illustrate 95% confidence bounds. (b) As in (a) but with a
better rescaling of time. The empirical distribution follows the cumulative of the uniform distribution
within the confidence bounds.

It is a useful and somewhat surprising result that A(¢*) (evaluated at the measured firing
times) is a Poisson process with unit rate (Brown et al., 2002). A correlate of this time-
rescaling theorem is that the time intervals

AR = AT (10.43)

are independent random variables with an exponential distribution (see Chapter 7). Re-
scaling again the time axis with the transformation

g =1—exp [— (A(tk) —A(t"’l))] (10.44)

forms independent uniform random variables on the interval zero to 1.

Therefore, if the model p(¢|S, 0) is a valid description of the spike train S(¢), then the
resulting z; should have the statistics of a sequence of independent uniformly distributed
random variables. As a first step, one can verify that the z;s are independent by looking at
the serial correlation of the interspike intervals or by using a scatter plot of z;, | against zj.
Testing whether the z;s are uniformly distributed can be done with a Kolmogorov—Smirnov
(K-S) test. The K-S statistic evaluates the distance between the empirical cumulative dis-
tribution function of z;, P(z), and the cumulative distribution of the reference function. In
our case, the reference function is the uniform distribution, so that its camulative is simply
z. Thus,

D =sup|P(z) —7]. (10.45)
2

The K-S statistic converges to zero as the empirical probability P(z) converges to the
reference. The K-S test then compares D with the critical values of the Kolmogorov dis-
tribution. Figure 10.6 illustrates two examples: one where the empirical distribution was
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Fig. 10.7 Distance and angular separation between spike trains seen as vectors. (a) Three
schematic spike trains where the first two have the same number of spikes and roughly the same tim-
ing. (b) The spike trains in (a) can be represented as vectors where S and S, have the same length
but a slightly different orientation due to small differences in spike timing. The third spike train S3 is
much longer due to the larger number of spikes. It is at a squared distance D3 = ||S; — S3]|? from S,
and at angle 6.

far from a uniform distribution and the other where the model rescaled time correctly. See
(Gerhard et al., 2011) for a multivariate version of this idea that is applicable to the case
of coupled neurons. To summarize, the time-rescaling theorem along with the K-S test
provide a useful goodness-of-fit measure for spike train data with confidence intervals that
does not require multiple repetitions.

10.3.4 Spike-train metric

Evaluating the goodness-of-fit in terms of log-likelihood or the time-rescaling theorem
requires that we know the conditional firing intensity p(z|S, 6) accurately. For biophysical
models as seen in Chapter 2 but complemented with a source of variability, the firing inten-
sity is unavailable analytically. The intensity can be estimated numerically by simulating
the model with different realizations of noise, or by solving a Fokker—Planck equation, but
this is sometimes impractical.

Another approach for comparing spike trains involves defining a metric between spike
trains. Multiple spike timing metrics have been proposed, with different interpretations. A
popular metric was proposed by Victor and Purpura (1996). Here, we describe an alterna-
tive framework for the comparison of spike trains that makes use of vector space ideas,
rather than more general metric spaces.

Let us consider spike trains as vectors in an abstract vector space, with these vectors
denoted with boldface: S. A vector space is said to have an inner (or scalar) product if for
each vector pair S; and S; there exists a unique real number (S;,S;) satisfying the follow-
ing axioms: commutativity, distributivity, associativity, and positivity. There are multiple
candidate inner products satisfying the above axioms. The choice of inner product will be
related to the type of metric being considered. For now, consider the general form

T oo oo
(S:,S;) = /0 /_ ) /_ Kal5,8)Si(1 = )8t — o )dsas'ar (10.46)
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Fig. 10.8 The spike density vector. (a) A set of N spike trains (S, Sy, ..., Sy) is combined to yield an
estimate of the spike density V. At the limit N — oo the spike density converges to the instantaneous
firing rate v. (b) Schematic representation of the quantities in (a). The variability V measures the
scatter of the individual spike trains around their mean Vy.

where K, is a two-dimensional coincidence kernel with a scaling parameter A, and 7T is
the maximum length of the spike trains. Here K, is required to be a non-negative func-
tion with a global maximum at s = 5’ = 0. Moreover, Kx(s,s’) should fall off rapidly so
that Kx(s,s’) ~ 0 for all s,s" > A. Examples of kernels include Ka(s,s") = ki (s)k2(s"). For
instance, k; (s) =ka(s) = ie""/A@(s) is a kernel that was used by van Rossum (2001). The
scaling parameter A must be small, much smaller than the length T of the spike train.

For a comparison of spike trains seen as vectors the notions of angular separation, dis-
tance, and norm of spike trains are particularly important. The squared norm of a spike
train will be written ||S;||? = (S;,S;). With Ka(s,s") = §(s)8(s'), we observe that (S;,S;) =
[ Si(¢)dr = n; where n; is the number of spikes in S;. Therefore the norm of a spike train
is related to the total number of spikes it contains. The Victor and Purpura metric is of a
different form than the form discussed here, but it has similar properties (see exercies).

The norm readily defines a distance, D;;, between two spike trains

D} =18 =S;|* = (S —8;,8: =8)) = [[Si|* + IS ~ 2(S:.S,)- (10.47)

The right-hand side of Eq. (10.47) shows that that the distance between two spike trains is
maximum when (S;,S;) is zero. On the other hand, D%]- becomes zero only when §; = §.
This implies that (S;,S;) = (S:,Si) = (S;,S;). Again consider Kx(s,s") = 8(s)8(s’), then
D;; is the total number of spikes in both S; and S; reduced by 2 for each spike in S; that
coincided with one in S ;. For the following, it is useful to think of a distance between spike
trains as a number of non-coincident spikes.

The cosine of the angle between S; and S; is

(S;,8:)

cosf;; = ——— "
IS TS

(10.48)

This angular separation relates to the fraction of coincident spikes. Fig. 10.7 illustrates the
concepts of angle and distance for spike trains seen as vectors.
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Fig. 10.9 Distance and angular separation between spike densities. (a) Two spike densities corre-
sponding to a sum of spike trains labeled X and Y. (b) Schematic representation of the densities Vx
and ¥y seen as vectors. Both are separated by a distance ||y — ¥'y||? and angle 6. The variability is
shown as a gray cloud centered on the vectors.

10.3.5 Comparing sets of spike trains

Metrics such as D;; described above can quantify the similarity between two spike trains.
In the presence of variability, however, a simple comparison of spike trains is not sufficient.
Instead, the spike train similarity measure must be maximally sensitive to differences in the
underlying stochastic processes.

We want to know if spike trains generated from a neuron model could well have been
generated by a real neuron. We could simply calculate the distance between a spike train
from the neuron and a spike train from the model, but neurons are noisy and we will find
a different distance each time we repeat the recording. To achieve better statistics, we can
compare a set of spike trains from the model with a set of spike trains from the neuron.

Let the two sets of spike trains be denoted by X and Y, containing Nx and Ny spike
trains, respectively. First, it is useful to define some characteristics of such sets of spike
trains. A natural quantity to consider is the average of the norms of each spike train within
a set, say X,

~ 1 NX ()C) 2
Ly = — S: 10.49
X NXZ;H i ( )

where we have used " to denote that the quantity is an experimental estimate. We note
that Ly is related to the averaged spike count. Ly is exactly the averaged spike count if
the inner product satisfies (i) [ [ Ka(s,s')dsds’ = 1 and (ii) Ka(s,s’) = 0 whenever |s — |
is greater than the minimum interspike interval of any of the spike trains considered. The
interpretation Ly ~ spike count is helpful for the discussion in the remainder of this section.
Furthermore, the vector of averaged spike trains,

1 ¥

3 s, (10.50)
=1

Vx = —
Ny &

is another occurrence of the spike density seen in Chapter 7. It defines the instantaneous
firing rate of the the spiking process, v(¢) = (V). In the vector space, Vx can be thought of
as lying at the center of the spike trains seen as vectors (Fig. 10.9); note that other “mean
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spike trains” could be defined (Wu and Srivastava, 2012). The size of the cloud quantifies
the variability in the spike timing. The variability is defined as the variance

L e oo
Nx—lgHSi — Ux||*. (10.51)
14

Vy =

A set of spike trains where spikes always occur at the same times has low variability. When
the spikes occur with some jitter around a given time, the variability is larger. Variability
relates to reliability. While variability is a positive quantity that cannot exceed Ly, relia-
bility is usually defined between zero and 1, where 1 means perfectly reliable spike timing:
Ry = 1—Vx/ix .

Finally, we come to a measure of match between the set of spike trains X and Y. The
discussion in Chapter 7 about the neural code would suggest that neuron models should
reproduce the detailed time structure of the PSTH. We therefore define

RxLx +RyLy
We have M (for match) equal to 1 if X and Y have the same instantaneous firing rate.
The smaller M is, the greater the mismatch between the spiking processes. The quantity
Rx Ly can be interpreted as a number of reliable spikes. Since (Vx, Vy) is interpreted as a
number of coincident spikes between X and Y, we can still regard M as a factor counting
the fraction of coincident spikes. A similar quantity can be defined for metrics that cannot
be cast into an inner product (Naud et al., 2011).

If the kernel Kx(s,s") is chosen to be k,(s)ky(s") and k, is a Gaussian distribution of
width A, then M relates to a mean square error between PSTHs that were filtered with k.
Therefore, the kernel used in the definition of the inner product (Eq. (10.46)) can be related
to the smoothing filter of the PSTH (see Exercises).

(10.52)

10.4 Closed-loop stimulus design

In the previous sections we have developed robust and tractable approaches to understand
neural encoding, based on GLMs, and quantifying the performance of models. The frame-
work we have developed is ultimately data-driven; both our encoding and decoding meth-
ods fail if the observed data do not sufficiently constrain our encoding model parameters 6.
Therefore we will close by describing how to take advantage of the properties of the GLM
to optimize our experiments: the objective is to select, in an online, closed-loop manner,
the stimuli that will most efficiently characterize the neuron’s response properties.

An important property of GLMs is that not all stimuli will provide the same amount of
information about the unknown coefficients k. As a concrete example, we can typically
learn much more about a visual neuron’s response properties if we place stimulus energy
within the receptive field, rather than “wasting” stimulus energy outside the receptive field.
To make this idea more rigorous and generally applicable, we need a well-defined objec-
tive function that will rank any given stimulus according to its potential informativeness.
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Numerous objective functions have been proposed for quantifying the utility of different
stimuli (Mackay, 1992; Nelken et al., 1994; Machens, 2002). When the goal is estimating
the unknown parameters of a model, it makes sense to choose stimuli x; which will on aver-
age reduce the uncertainty in the parameters 6 as quickly as possible (as in the game of 20
questions), given D = {x(s), n, }s<r, the observed data up to the current trial. This posterior
uncertainty in 6 can be quantified using the information-theoretic notion of “entropy”; see
Cover and Thomas (1991), Mackay (1992), Paninski (2005) for further details.

In general, information-theoretic quantities such as the entropy can be difficult to com-
pute and optimize in high-dimensional spaces. However, Lewi et al. (2009) show that the
special structure of the GLM can be exploited (along with a Gaussian approximation to
p(6|D)) to obtain a surprisingly efficient procedure for choosing stimuli optimally in many
cases. Indeed, a closed-loop optimization procedure leads to much more efficient experi-
ments than does the standard open-loop approach of stimulating the cell with randomly
chosen stimuli that are not optimized adaptively for the neuron under study.

A common argument against online stimulus optimization is that neurons are highly
adaptive: a stimulus which might be optimal for a given neuron in a quiescent state may
quickly become suboptimal due to adaptation (in the form of short- and long-term synap-
tic plasticity, slow network dynamics, etc.). Including spike-history terms in the GLM
allows us to incorporate some forms of adaptation (particularly those due to intrinsic pro-
cesses including, for example, sodium channel inactivation and calcium-activated potas-
sium channels), and these spike-history effects may be easily incorporated into the deriva-
tion of the optimal stimulus (Lewi et al., 2009). However, extending these results to models
with more profound sources of adaptation is an important open research direction; see Lewi
et al. (2009) and DiMattina and Zhang (2011) for further discussion.

10.5 Summary

With modern statistical methods, we have fast and computationally tractable schemes to fit
models of neural encoding and decoding to experimental data. A key insight is that, for a
suitable chosen model class, the likelihood of the data being generated by the model is a
concave function of the model parameters, i.e., there are no local maxima. Because of this,
numerical methods of gradient ascent are bound to lead to the global maximum.

Generalized Linear Models (GLMs) are the representative of this model class. Impor-
tantly, a large ensemble of generalized integrate-and-fire models, in particular the SRM
with escape noise, belong to the family of GLMs. As we have seen in previous chap-
ters, the SRM can account for a large body of electrophysiological data and firing patterns
such as adaptation, burst firing, time-dependent firing threshold, hyperpolarizing spike-
afterpotential, etc. The link from SRM to GLM implies that there are systematic and com-
putationally fast methods to fit biologically plausible neuron models to data.

Interestingly, once neuron models are phrased in the language of statistics, the problems
of coding and stimulus design can be formulated in a single unified framework. In the
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following chapter we shall see that the problem of decoding can also be analyzed in the
same statistical framework.
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Exercises

1. Concave function and non-global optima
(a) Suppose a function G(x) has a global maximum at location xq. Suppose that f(y) is a
strictly increasing function of y (i.e., df /dy > 0).
Show that f(G(x)) has a maximum at xq. Is it possible that f(G(x)) has further maxima as a
function of x?
(b) A strictly concave function G can be defined as a curve with negative curvature d>G / dx? <
0 for all x. Show that a concave function can have at most one maximum.
(c) Give an example of a concave function which does not have a maximum. Give an example
of a function G which has a global maximum, but is not concave. Give an example of a function
G which is concave and has a global maximum.
2. Sum of concave functions. Consider a quadratic function fi(x) = 1 — (x — %)
(a) Show that f} is a concave function of x for any choice of parameter Uy.
(b) Show that fi(x) + f2(x) is a concave function.
(c) Show that ¥}, by fi.(x) with by > 0 is a concave function.
(d) Repeat the steps (b) and (c) for a family of functions f; which are concave, but not neces-
sarily quadratic.
3. Comparing PSTHs and spike train similarity measures. Experimentally the PSTH is con-
structed from a set of Nyep spike trains, S;(t), measured from repeated presentations of the same
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stimulus. The ensemble average of the recorded spike trains:

Nrep

L Y5 (10.53)

Nrep i=1

is typically convolved with a Gaussian function hg(x) = (2r62) "/ 2exp (—x%/20%) with ©
around 5ms, such that A (t) = (hg * ﬁepz&)(t) is a smoothed PSTH. Suppose that two sets
of experimental spike trains were recorded in two different conditions, resulting in two smoothed
PSTHs A1 (1) and A, (t).

(a) Show that the sum of the squared error (A1(t) — Ay (t))? can be written as a distance between
sets of spike train D? with the kernel K (t,t") = hg(t)hg(t').

(b) Recall that the correlation coefficient between datasets x and y is

¢ = cov(x,y)/+/cov(x,x)cov(y,y). (10.54)

Show that the correlation coefficient between the two smoothed PSTHs can be written as a angu-
lar separation between the sets of spike trains with kernel K (t,1') = hq(t)hg(t').

4. Victor and Purpura metric. Consider the minimum cost C required to transform a spike train
S; into another spike train S if the only transformations available are:
- removing a spike has a cost of 1,
- adding a spike has a cost of 1,
- shifting a spike by a distance d has a cost qd where q is a parameter defining temporal preci-
sion.
The C defines a metric that measures the dissimilarity between spike train S; and spike train S ;.
The smaller C is the more alike the spike trains are in terms of spike timing.
(a) For q = 0 units of cost per seconds, show that C becomes the difference in number of spikes
in spike trains S; and S ;.
(b) For q greater than four times the maximum firing frequency (i.e., the inverse of the short-
est observed interspike interval), show that C can be written as a distance Dl-zj with kernel
K(t,t") = h(t)8(¢') and triangular function hy(t) = (1 —|t|q/2)O(1 — |t|g/2) where 8(-) is the
Dirac delta function and ©(-) is the Heaviside function.
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Encoding and decoding with stochastic neuron models

In the ten preceding chapters, we have come a long way: starting from the biophysical basis
of neuronal dynamics we arrived at a description of neurons that we called generalized
integrate-and-fire models. We have seen that neurons contain multiple types of ion chan-
nels embedded in a capacitive membrane (Chapter 2). We have seen how basic principles
regulate the dynamics of electrical current and membrane potential in synapses, dendrites
and axons (Chapter 3). We have seen that sodium and potassium ion channels form an
excitable system characterized by a threshold mechanism (Chapter 4) and that other ion
channels shape the spike after-effects (Chapter 6). Finally, we have seen in Chapters 4,
5 and 6 how biophysical models can be reduced by successive approximations to other,
simpler, models such as the LIF, EIF, AdEx, and SRM. Moreover, we have added noise to
our neuron models (Chapters 7 and 9). At this point, it is natural to step back and check
whether our assumptions were too stringent, whether the biophysical assumptions were
well-founded, and whether the generalized models can explain neuronal data. We laid out
the mathematical groundwork in Chapter 10; we can now set out to apply these statistical
methods to real data.

We can test the performance of these, and other, models by using them as predictive
models of encoding. Given a stimulus, will the model be able to predict the neuronal
response? Will it be able to predict spike times observed in real neurons when driven by the
same stimulus — or only the mean firing rate or PSTH? Will the model be able to account
for the variability observed in neuronal data across repetitions?

Testing the performance of models addresses an even bigger question. What information
is discarded in the neural code? What features of the stimulus are most important? If we
understand the neural code, will we be able to reconstruct the image that the eye is actu-
ally seeing at any given moment from spike trains observed in the brain? The problem of
decoding neuronal activity is central both for our basic understanding of neural informa-
tion processing (Rieke et al., 1997) and for engineering “neural prosthetic” devices that
can interact with the brain directly (Donoghue, 2002). Given a spike train observed in the
brain, can we read out intentions, thoughts, or movement plans? Can we use the data to
control a prosthetic device?

In Section 11.1 we use the generalized integrate-and-fire models of Chapters 6 and 9
to predict membrane voltage and spike timings of real neurons during stimulation with an
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arbitrary time-dependent input current in vitro. In Section 11.2, we use the same model
class to predict spike timings in vivo. Finally, in Section 11.3 we examine the question
of decoding: given a measured spike train can we reconstruct the stimulus, or control a
prosthetic arm?

11.1 Encoding models for intracellular recordings

We will focus the discussion on generalized integrate-and-fire models with escape noise,
also called soft-threshold integrate-and-fire models (Fig. 10.3a). The vast majority of stud-
ies achieving good predictions of voltage and spike timing use some variant of this model.
The reasons lie in the model’s ease of optimization and in its flexibility; see Chapter 6.
Also, the possibility of casting them into the GLM formalism allows efficient parameter
optimization; see Chapter 10. In Section 11.1.1 we use the SRM as well as soft-threshold
integrate-and-fire models to predict the subthreshold voltage of neurons in slices driven
by a time-dependent external current. We then use these models to also predict the spike
timings of the same neurons (Section 11.1.2).

11.1.1 Predicting membrane potential

The SRM describes somatic membrane potential in the presence of an external current
(Section 6.4)

u(t) = S n(—) +/°° () 19 — ) ds + thges. (1L.1)
f 0

The parameters of this model define the functional shape of the functions 1(z) and x(¢).
Other parameters such as threshold or, in a stochastic model, the sharpness of threshold
B do not contribute to the mean squared error of the membrane potential as defined in
Section 10.3.1. Following the methods of Chapter 10, we can estimate the functions (7)
and 7 (¢) from recordings of cortical neurons. We note that the spike-afterpotential has
units of voltage, whereas the membrane filter x has units of resistance over time.

Using in vitro intracellular recordings of cells in layer 2-3 of the somatosensory cortex,
Mensi et al. (2012) optimized the functions x(¢) and 1(¢) on the recorded potential. For
both the main type of excitatory neurons and the main type of inhibitory neurons, the mem-
brane filter k(¢) is well described by a single exponential (Fig. 11.1a). Different cell types
have different amplitudes and time constants. The inhibitory neurons are typically faster,
with a smaller time constant than the excitatory neurons, suggesting we could discriminate
between excitatory and inhibitory neurons in terms of the shape of xk(¢). Discrimination of
cell types, however, is much improved when we take into account the spike-afterpotential.
The shape of 71(¢) in inhibitory cells is very different than that in excitatory ones
(Fig. 11.1b).

While the spike-afterpotential is a monotonically decreasing function in the excitatory
cells, in the inhibitory cells the function 17(r) is better fitted by two exponentials of opposite
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Fig. 11.1 Parameters of voltage recordings in the main excitatory and inhibitory neuron type of
cortical layer 2-3. (a) Membrane filter for the main excitatory cell type kg (¢) and the fast-spiking
inhibitory cell type x;(¢). (b) Spike-afterpotential for the main excitatory cell type ng(r) and the
main inhibitory cell type 1n;(¢). Equations have units of ms for time, mV for n and MQ/ms for k.
Modified from Mensi et al. (2012).

polarity. This illustrates that different cell types differ in the functional shape of the spike-
afterpotential 1 (7). This finding is consistent with the predictions of Chapter 6 where
we discussed the role of different ion channels in shaping 7(¢). Similar to Fig. 6.14, the
spike-afterpotential of inhibitory neurons is depolarizing 30-150 ms after the spike time,
another property providing fast-spiking dynamics. Therefore, we conclude that the spike-
afterpotential of inhibitory neurons has an oscillatory component.

Once the parameters have been extracted from a first set of data, how well does the
neuron model predict membrane potential recordings? Qualitatively, we have already seen
in Chapter 10 (Fig. 10.5) an example of a typical prediction. Quantitatively, the membrane
potential fluctuations of the inhibitory and excitatory neuron have a RMSER (Eq. (10.39))
below one, meaning that the prediction error is smaller than our estimate of the intrinsic
error. This indicates that our estimate of the intrinsic error is slightly too large, probably
because the actual spike-afterpotential is even longer than a few hundred milliseconds — as
we shall see below.

Subthreshold mechanisms that can lead to a resonance (Chapter 6) would cause k() to
oscillate in time. Mensi et al. (2012) have tested for the presence of a resonance in k(7)
and found none. Using two exponentials to model k(¢) does not improve the prediction
of subthreshold membrane potential. Thus, the membrane potential filter is well described
by a single exponential with time constant 7,, = RC where R is the passive membrane
resistance and C the capacity of the membrane. If we set x(s) = (1/C)exp(—s/Tn), we
can take the derivative of Eq. (11.1) and write it in the form of a differential equation

du(r) 1

dr :_E(”_”rest)‘*‘;ﬁ(t_tf)‘f‘lm(f)y (11.2)

where 7] (s) is the time course of the net current triggered after a spike.
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T

Fig. 11.2 Voltage prediction. Goodness-of-fit of
B voltage recordings in the main excitatory and
inhibitory neuron types of cortical layer 2-3.
T RMSER (see Chapter 10) for generalized soft-
threshold integrate-and-fire models of excitatory
and inhibitory neurons (black bars). The gray bars
indicate models where the spike-afterpotential is
mediated by a spike-triggered change in conduc-
tance instead of current. Modified from Mensi

Inh. Exc. etal. (2012).

We have seen in Chapters 2 and 6 that spike-triggered adaptation is mediated by ion
channels that change the conductance of the membrane. Biophysics would therefore sug-
gest a spike-triggered change in conductance, such that after every spike the total current
that can charge the membrane capacitance is

C%xnc(t—f)(u—Em), (11.3)
where 1 is the spike-triggered change in conductance and E\.y its reversal potential. The
reversal potential and the time course 1)¢ can be optimized to yield the best goodness-of-
fit. In the excitatory neurons, the resulting conductance change follows qualitatively the
current-based (7). The prediction performance, however, is not significantly improved
(Fig. 11.2), indicating that describing spike after-effects in terms of current is a good
assumption.

11.1.2 Predicting spikes

Using the same intracellular recordings as in Fig. 11.1 (Mensi et al., 2012), we now ask
whether spike firing can be predicted from the model. The results of the previous sub-
section provide us with the voltage trajectory u(¢) of the generalized integrate-and-fire
model. Assuming a moving threshold that can undergo a stereotypical change at every
spike (1) = ¥+ X761 (r — /) we can model the conditional firing intensity as follows,
given the spike train, S (compare Eq. (9.27))

p(r\s>=fioexp lﬁ (u(z)—zso— ) em—rf)ﬂ . (11.4)

tfes

Since the parameters regulating u(¢) were optimized using the subthreshold membrane
potential in Section 11.1.1, the only free parameters left are those of the threshold, i.e., ¥,
B, and the function 6 (¢). Once the function 6; is expanded in a linear combination of basis
functions, maximizing the likelihood Eq. (10.40), can be done through a convex gradient
descent because Eq. (11.4) can be cast into a GLM.
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Fig. 11.3 Parameters and spike time prediction in the main excitatory and inhibitory neuron type
of cortical layer 2-3. (a) Moving threshold for the main excitatory cell type was found to be an
exponentially decaying function (top curve and equation). For the main inhibitory cell type, the fitted
moving threshold was not significantly different from zero (bottom curve and equation). Equations
have units of ms for time and mV for 6;. (b) The spike-timing prediction in terms of the similarity
measure M (Eq. (10.52)) for models with the moving threshold (black bars) and without the moving
threshold (gray bars). Modified from Mensi et al. (2012).

Is the dynamic threshold necessary? Optimizing the parameters on a training dataset, we
find no need for a moving threshold in the inhibitory neurons (Fig. 11.3a). The threshold in
those cells is constant in time. However, the excitatory cells have a strongly moving thresh-
old (Fig. 11.3a) which is characterized by at least two decay time constants. A moving
threshold can have several potential biophysical causes. Inactivation of sodium channels is
a likely candidate (Fleidervish et al., 1996).

How good is the prediction of spike times in inhibitory and excitatory cortical neurons?
Qualitatively, the model spike trains resemble the recorded ones with a similar intrinsic
variability (Fig. 10.5). Quantitatively, Mensi et al. (2012) used the measure of match M
(see Eq. (10.52)) and K(r,¢') = O(t + A)O(A —1)8(¢') with A = 4 ms. They found
M = 87% for the inhibitory neurons and M = 81% for the excitatory neurons (Fig. 11.3b).
Intuitively, this result means that these models predict more than 80% of the “predictable”
spikes.

These numbers are averaged over a set of cells. Some cells were predicted better than
others such that the M reached 95% for inhibitory neurons and 87% for excitatory neurons.
Similar results are found in excitatory neurons of layer 5. Spikes from these neurons can be
predicted with M = 81% on average (Pozzorini et al., 2013). Other optimization methods
but with similar models could improve the spike-timing prediction of inhibitory neurons,
reaching M =100% for some cells (Kobayashi et al., 2009). Thus, the case of inhibitory
neurons seems well resolved. The almost perfect match between predicted and experimen-
tal spike trains leaves little place for model refinement. Unless the stimulus is specifically
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designed to probe bursting or postinhibitory rebound, the generalized integrate-and-fire
model is a sufficient description of the fast-spiking inhibitory neuron.

One important feature of the model for spike-timing prediction is adaptation. Optimiz-
ing a generalized integrate-and-fire model with refractory effects but no adaptation reduces
the prediction performance by 20-30% (Jolivet et al., 2008b), for both the excitatory and
inhibitory cortical cells. How long do the effects of spike-triggered adaptation last? Sur-
prisingly, a single spike has a measurable effect more than 10 seconds after the action
potential has occurred (Fig. 11.4). Thus, adaptation is not characterized by a single time
scale (Lundstrom et al., 2008) and shows up as a power-law decay in both spike-triggered
current and threshold (Pozzorini et al., 2013).

11.1.3 How good are generalized integrate-and-fire models?

For excitatory neurons, a value of M = 81% implies that there remains nevertheless 19%
unexplained PSTH variance. Using state-of-the-art model optimization for a full biophys-
ical model with ion channels and extended dendritic tree does not improve the model per-
formance (Druckmann et al., 2007). Considering a dependence on the voltage derivative
in the escape rate (Chapter 9) can slightly improve the performance (Kobayashi and Shi-
nomoto, 2007) but is not sufficient to achieve a flawless prediction. Similarly, taking into
account very long spike-history effects (Fig. 11.4) and experimental drifts improves mostly
the prediction of time-dependent rate performance on long time scales, and only slightly
spike-time prediction at short time scales (Pozzorini et al., 2013). Overall, the situation
gives the impression that a mechanism might be missing in the generalized integrate-and-
fire model and perhaps in the biophysical description as well.

Nevertheless, more than 80% of PSTH variance is predicted by generalized soft-threshold
integrate-and-fire models during current injection into the soma. This result holds for a
time-dependent current which changes on fast as well as slow time scales — a challenging
scenario. The effective current driving single neurons in an awake animal in vivo might
have comparable characteristics in that it comprises slow fluctuations of the mean as well
as fast fluctuations (Crochet et al., 2011; Pozzorini et al., 2013). Similarly, the net driving
current in connected model networks (see Part III), typically also shows fluctuations around
a mean value that changes on a slower time scale. Taken together, generalized integrate-
and-fire models are valid models in the physiological input range observed in vivo, and are
good candidates for large-scale network simulation and analysis.

Linear dendritic effects show up in the membrane filter and spike-afterpotential; but
strongly nonlinear dendrites as observed with multiple recordings from the same neuron
(Larkum et al., 2001) cannot be accounted for by a generalized soft-threshold integrate-
and-fire model or GLM. If nonlinear interactions between different current injection sites
along the dendrite are important, a different class of neuron models needs to be considered
(Chapter 3).
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Fig. 11.4 Long spike after-effects in excitatory cortical cells of the layer 5. (a) The spike-triggered
current fitted on the membrane potential of layer 5 pyramidal neurons is shown as a function of
time since spike emission. Although the effect of a spike appears to be over after a few tens of
milliseconds, the log—log scale (inset) reveals that the spike after-current decays with a power law
7(z) o« —t~93 over four orders of magnitude. (b) The moving threshold fitted on the spike timing
of layer 5 pyramidal neurons is shown as a function of time since spike emission. As in (a), the
log-log scale (inset) reveals a power law 0 (r) o< =98 (Pozzorini et al., 2013).

11.2 Encoding models in systems neuroscience

Generalized integrate-and-fire models have been used not only for spike prediction of neu-
rons in brain slices, but also for measurements in systems neuroscience, i.e., in the intact
brain driven by sensory stimuli or engaged in a behavioral task. Traditionally,
electrophysiological measurements in vivo have been performed with extracellular elec-
trodes or multi-electrode probes. With extracellular recording devices, the presence of
spikes emitted by one or several neurons can be detected, but the membrane potential of the
neuron is unknown. Therefore, in the following we aim at predicting spikes in extracellular
recordings from a single neuron, or in groups of connected neurons.

11.2.1 Receptive fields and linear-nonlinear-poisson model

The linear properties of a simple neuron in the primary visual cortex can be identified with
its receptive field, i.e., the small region of visual space in which the neuron is responsive
to stimuli (see Chapters 1 and 12). Receptive fields as linear filters have been analyzed in
a wide variety of experimental preparations.

Experimentally, the receptive field of a simple cell in visual cortex can be determined
by presenting a random sequence of spots of lights on a gray screen while the animal is
watching the screen (Fig. 11.5a). In a very limited region of the screen, the spot of light
leads to an increase in the probability of firing of the cell, in an adjacent small region to a



274 Encoding and decoding with stochastic neuron models

(b)

 iNp

u%@r}[

A (|

@ l=> ﬂu F‘

GLM Az

‘Encoding’ ‘Encoding’

Fig. 11.5 The encoding problem in the visual neuroscience. (a) A stimulus is presented on a screen
while a spike train is recorded from an area in the visual cortex. (b) Models designed to predict the
spike train first filter the stimulus x with a spatial filter k (linear processing step), pass the result
u = k - x through a nonlinearity f and then generate spikes stochastically with Poisson statistics.
The main difference between a Linear-Nonlinear-Poisson (LNP, top) and a soft-threshold generalized
integrate-and-fire model (GLM, bottom) is the presence of spike-triggered currents 7j(s) in the latter.

decrease. The spatial arrangement of these regions defines the spatial receptive field of the
cell and can be visualized as a two-dimensional spatial linear filter (Fig. 11.5b).

Instead of a two-dimensional notation of screen coordinates, we choose in what follows
a vector notation where we label all pixels with a single index k. For example, on a screen
with 256 x 256 pixels we have 1 < k < K with K = 65536. A full image corresponds
to a vector x = (xi,...,xx) while a single spot of light corresponds to a vector with all
components equal to zero except one (Fig. 11.6a).

The spatial receptive field of a neuron is a vector k of the same dimensionality as x. The
response of the neuron to an arbitrary spatial stimulus x depends on the total drive k - x;,
i.e., the similarity between the stimulus and the spatial filter.

More generally, the receptive field filter k can be described not only by a spatial com-
ponent, but also by a temporal component: an input 100 ms ago has less influence on the
spiking probability now than an input 30 ms ago. In other words, the scalar product k - x,
is a short-hand notation for integration over space as well as over time. Such a filter k is
called a spatio-temporal receptive field.

In the Linear-Nonlinear-Poisson (LNP) model, one assumes that spike trains are pro-
duced by an inhomogeneous Poisson process with rate

p(t) = flk-x;), (11.5)

given by a cascade of two simple steps (Fig. 11.5b). The linear stage, k - x;, is a linear pro-
jection of x;, the (vector) stimulus at time ¢, onto the receptive field k; this linear stage is
then followed by a simple scalar nonlinearity f(.) which shapes the output (and in partic-
ular enforces the non-negativity of the output firing rate p(z)). A great deal of the systems
neuroscience literature concerns the quantification of the receptive field parameters k.
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Fig. 11.6 Spatial receptive field measurement. (a) While the animal focuses on the center (star),
light dots are presented at random positions on a gray screen; in the present trial, pixel 19 lights up.
The input is denoted as a vector x;. (b) Schematic of input matrix X. Matrix representing a sparse
input, such as a single spot of light. Rows of the matrix correspond to different trials, marked by the
observation time ¢.

Note that the LNP model neglects the spike-history effects that are the hallmark of the
SRM and the GLM - otherwise the two models are surprisingly similar; see Fig. 11.5b.
Therefore, an LNP model cannot account for refractoriness or adaptation, while a GLM in
the form of a generalized soft-threshold integrate-and-fire model does. The question arises
whether a model with spike-history effects yields a better performance than the standard
LNP model.

Both models, LNP and GLM, can be fitted using the methods discussed in Chapter 10.
For example, the two models have been compared on a dataset where retinal ganglion cells
have been driven by full-field light stimulus, i.e., the stimulus did not have any spatial
structure (Pillow et al., 2005). Prediction performance had a similar range of values as
for cortical neurons driven by intracellular current injection, with up to 90% of the PSTH
variance predicted in some cases. LNP models in this context have significantly worse
prediction accuracy; in particular, LNP models greatly overestimate the variance of the
predicted spiking responses. See Fig. 11.7 for an example.

Example: Detour on reverse correlation for receptive field estimation

Reverse correlation measurements are an experimental procedure based on spike-
triggered averaging (de Boer and Kuyper, 1968; Chichilnisky, 2001). Stimuli x are
drawn from some statistical ensemble and presented one after the other. Each time the
neuron elicits a spike, the stimulus x presented just before the firing is recorded.
The reverse correlation filter is the mean of all inputs that have triggered a spike

Xy

2y ’

XRevCorr = <x>spike = (11.6)
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where n; is the spike count in trial 7. Loosely speaking, the reverse correlation tech-
nique finds the typical stimulus that causes a spike. In order to make our intuitions more
precise, we proceed in two steps.

First, let us consider an ensemble p(x) of stimuli x with a “power” constraint |x|*> < c.
Intuitively, the power constraint means that the maximal light intensity across the whole
screen is limited. In this case, the stimulus that is most likely to generate a spike under
the linear receptive field model (11.10) is the one which is aligned with the receptive
field

xoptxk; (1]7)

see Exercises. Thus the receptive field vector k can be interpreted as the optimal stimulus
to cause a spike.

Second, let us consider an ensemble of stimuli x with a radially symmetric distribu-
tion, where the probability of a possibly multi-dimensional x is equal to the probability
of observing its norm |x| : p(x) = p.(|x|). Examples include the standard Gaussian dis-
tribution, or the uniform distribution with power constraint p(x) = py for |x|> < ¢ and
zero otherwise. We assume that spikes are generated with the LNP model of Eq. (11.5).
An important result is that the experimental reverse correlation technique yields an unbi-
ased estimator of the filter &, i.e.,

(*Reveorr) =k . (11.8)

The proof (Bussgang, 1952; Simoncelli et al., 2004) follows from the fact that each arbi-
trary input vector x; can be separated into a component parallel to k and one orthogonal
to it. Since we are free to choose the scale of the filter k we can impose |k| = 1 and write

x;=(k-x)k+(e-x;)e (11.9)

where e is a unit vector in the subspace orthogonal to k. For firing, only the compo-
nent parallel to k matters. The symmetry of the distribution p(x) guarantees that spike-
triggered averaging is insensitive to the component orthogonal to k; see Exercises.

In summary, reverse correlations are an experimental technique to determine the
receptive field properties of a sensory neuron under an LNP model. The success of
the reverse correlation technique as an experimental approach is intimately linked to
its interpretability in terms of the LNP model.

Reverse correlations in the LNP model can also be analyzed in a statistical framework.
To keep the arguments simple, we focus on the linear case and set

flk-x)=po+k-x;. (11.10)

The parameters minimizing the squared error between the model firing rate py +k - x
and the observed firing rate n, are then

kopt = (XTXx) ! (Zn,x,) /dt . (11.11)
t
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We note that, for short observation intervals A, the spike count 7, is either zero or 1.
Therefore the term in parentheses on the right-hand side is proportional to the classical
spike-triggered average; see Eq. (11.6). The factor in front of the parentheses, XX, is a
scaled estimate of the covariance of the inputs x. For stimuli consisting of uncorrelated
white noise or light dots at random positions, the covariance structure is particularly
simple.

See Paninski (2004) for further connections between reverse correlation and
likelihood-based estimates of the parameters in the LNP model.
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Fig. 11.7 Example predictions of retinal ganglion ON-cell (RGC) activity using the generalized
linear encoding model with and without spike-history terms. (a) Recorded responses to repeated full-
field light stimulus (top) of true ON cell (“RGC”), simulated LNP model (no spike-history terms;
“LNP”), and Generalized Linear Model including spike-history terms (“GLM”). Each row corre-
sponds to the response during a single stimulus presentation. (b) Magnified sections of rasters, with
rows sorted in order of first spike time within the window in order to show spike-timing details. Note
that the predictions of the model including spike-history terms are in each case more accurate than
those of the Poisson (LNP) model. (PSTH variance accounted for: 91%, compared to 39% for the
LNP model). (c) Time-dependent firing rate plotted as a PSTH. (d) Variance of the time-dependent
firing rate. All data shown here are cross-validated “test” data (i.e., the estimated model parameters
were in each case computed based on a non-overlapping “training” dataset not shown here). From
Paninski ez al. (2007) based on data from Uzzell and Chichilnisky (2004).



278 Encoding and decoding with stochastic neuron models

11.2.2 Multiple neurons

Using multi-electrode arrays, Pillow et al. (2008) recorded from multiple ganglion cells in
the retina provided with spatio-temporal white noise stimuli. This stimulation reaches the
ganglion cells after being transducted by photoreceptors and interneurons of the retina. It
is assumed that the effect of light stimulation can be taken into account by a linear filter of
the spatio-temporally structured stimulus. An SRM-like model of the membrane potential
of a neuron i surrounded by n other neurons is

an t—t]) +k;-x(t +22£,j t—t )+ Urest.- (11.12)
J#if
The light stimulus x(¢) filtered by the receptive field of neuron i, k;, replaces the artificially
injected external current in Eq. (11.1). The spike-afterpotential n; () affects the membrane
potential as a function of the neuron’s own spikes. Spikes from a neighboring neuron j
modify the membrane potential of neuron i according to the coupling function &;(t).

The extracellular electrodes used by Pillow et al. (2008) did not probe the membrane
potential. Nonetheless, by comparing the spike times with the conditional firing intensity
p(t|{S}) = TLO exp (u(t)) we can maximize the likelihood of observing the set of spike
trains {S} (Chapter 10). This way we can identify the spatio-temporal receptive field k;,
the spike-afterpotential 11(¢) and the coupling functions &;(t).

The fitted functions k; showed two types of receptive fields (Pillow ez al., 2008). The
ON cells were sensitive to recent increase in luminosity while the OFF cells were sensitive
to recent decrease. The coupling functions also reflect the two different neuron types. The
coupling from ON cells to ON cells is excitatory and the coupling from ON cells to OFF
cells is inhibitory, and conversely for couplings from OFF cells.

How accurate are the predictions of the multi-neuron model? Figure 11.8 describes the
prediction performance. The spike-trains and PSTHs of the real and modeled neurons are
similar. The spike-train likelihood reaches 2 bits per spike and the PSTH is predicted with
80-93% accuracy. Overall, the coupled model appears as a valid description of neurons
embedded in a network.

Pillow er al. (2008) also asked about the relevance of coupling between neurons. Are
the coupling functions an essential part of the model or can the activity be accurately
predicted without them? Optimizing the model with and without the coupling function
independently, they found that the prediction of PSTH variance was unaffected. The spike
prediction performance, however, showed a consistent improvement for the coupled model.
(See (Vidne et al., 2012) for further analysis using a model incorporating unobserved com-
mon noise effects.) Interneuron coupling played a greater role in decoding, as we shall see
in the next section.

11.3 Decoding

“Decoding” refers to the problem of how to “read out” the information contained in a set
of neural spike trains (Fig. 11.9) and has both theoretical and practical implications for the
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Fig. 11.8 Spike-train prediction of a retinal ganglion cell within its network. (a) Raster of
responses of a retinal ganglion cell (RGC; top) to 25 repetitions of 1s stimulus, and responses of
the fully coupled model (Full model; bottom) to the same stimulus. (b) PSTH of the RGC (full black
line) and the fully coupled model (dashed black line). (c) PSTH prediction for the fully coupled
model of different cells plotted against the the PSTH prediction of a model fitted without interneu-
ron coupling. (d) Log-likelihood (Eq. (10.41)) for the fully coupled model of different cells plotted
against the log-likelihood of a model fitted without interneuron coupling. Modified from Pillow et al.
(2008).

study of neural coding (Rieke et al., 1997; Donoghue, 2002). A variety of statistical tech-
niques have been applied to this problem (Rieke et al., 1997; E. Brown et al., 1998; Pillow
et al., 2011; Ahmadian er al., 2011b); in this section, we focus specifically on decoding
methods that rely on Bayesian “inversion” of the generalized linear encoding model dis-
cussed above and in Chapter 10. That is, we apply Bayes’ rule to obtain the posterior
probability of the stimulus, conditional on the observed response:

p(x|D) = p(Dlx)p(x), (11.13)

where p(x) is the prior stimulus probability. As an aside we note that a similar idea was
used above when we incorporated prior knowledge to regularize our estimates of the encod-
ing model parameter 6; here we are assuming that 6, or equivalently p(D|x), has already
been estimated to a reasonable degree of precision, and now we want to incorporate our
prior knowledge of the stimulus x.

The primary appeal of such Bayesian decoding methods is that they are optimal if we
assume that the encoding model p(D|x) is correct. Decoding therefore serves as a means
for probing which aspects of the stimulus are preserved by the response, and also as a tool
for comparing different encoding models. For example, we can decode a spike train using
different models (e.g., including vs. ignoring spike-history effects) and examine which
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‘Decoding’

Fig. 11.9 The decoding problem in visual neuroscience. How much can we learn about a
stimulus, given the spike trains of a group of neurons in the visual pathway?

encoding model allows us to best decode the true stimulus (Pillow et al., 2005). Such a
test may in principle give a different outcome than a comparison which focuses on the
encoding model’s ability to predict spike-train statistics. In what follows, we illustrate how
to decode using the stimulus which maximizes the posterior distribution p(x|D), and show
how a simple approximation to this posterior allows us to estimate how much information
the spike-train response carries about the stimulus.

11.3.1 Maximum a posteriori decoding

The maximum a posteriori (MAP) estimate is the stimulus x that is most probable given
the observed spike response D, i.e., the x that maximizes p(x|D). Computing the MAP
estimate for x once again requires that we search in a high-dimensional space (the space
of all possible stimuli x) to find the maximizer of a nonlinear function, p(x|D). Luckily,
in the GLM, the stimulus x interacts linearly with the model parameters 6, implying that
concavity of the log-likelihood with respect to x holds under exactly the same conditions
as does concavity in 8 (Paninski, 2004). Moreover, the sum of two concave functions is
concave, so the log-posterior,

log p(x|D) = log p(D|x) +log p(x) + ¢, (11.14)

is concave as long as the stimulus log-prior log p(x) is itself a concave function of x (e.g.,
p is Gaussian). In this case, again, we may easily compute Xyap by numerically ascending
the function log p(x|D).

We emphasize that the MAP estimate of the stimulus is, in general, a nonlinear function
of the observed spiking data D. As an empirical test of the MAP estimate, we can compare
its performance with that of the optimal linear estimate (OLE, see example below), the
best linear estimate of the stimulus as a function of the observed spiking data D (Rieke
et al., 1997).

Figure 11.10 shows a comparison of the two decoding techniques, given responses D
generated by a GLM encoding model with known parameters, as a function of stimulus
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Fig. 11.10 Illustration of MAP (maximum a posteriori) decoding. (a) Simulated spike trains from a
single pair of simulated ON and OFF retinal ganglion cells (above, gray and block dots) were used
to compute the MAP estimate (gray) of a 500 ms Gaussian white noise stimulus (black), sampled
at 100 Hz. (b) Spike trains from 10 identical, independent ON and OFF cells in response to the
same stimulus, with the associated MAP estimate of the stimulus, illustrating convergence to the
true stimulus as the responses of more cells are observed. (c) Comparison of the optimal linear
estimate (OLE) and MAP estimate on simulated data, as a function of the number of observed cells
(top) and stimulus contrast (variance; bottom). For each data point, the parameters of the OLE were
estimated using a long run of simulated data. “Relative error”” denotes the average RMS error between
the true and estimated stimulus, averaged over 100 trials, divided by the RMS amplitude of the true
stimulus.

contrast (variance) and size of the neuronal population. The MAP clearly outperforms the
OLE at high contrasts or large population sizes. More importantly, the MAP approach
provides us with a great deal of flexibility in considering different encoding models or
prior distributions: we can simply substitute in a new p(D|x) or p(x) and recompute the
MAP estimator, without having to obtain new estimates of the regression parameters as
required by the OLE; see (Ramirez et al., 2011) for an example of this type of analysis.
Finally, there are close connections between MAP decoding and the optimal control of
neural spiking; see Ahmadian et al. (2011a) for further discussion.

Example: Linear stimulus reconstruction

We predict the stimulus x; by linear filtering of the observed spike times
e fF <,

x(t) =xo+ D k(t—t/) (11.15)
7
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where the sum runs over all spike times. The aim is to find the shape of the filter £, i.e.,
the optimal linear estimator (OLE) of the stimulus (Rieke et al., 1997).

Parameters of the OLE can be obtained using standard least-squares regression of the
spiking data onto the stimulus x. To do so, we discretize time and the temporal filter .
Mathematically, the optimization problem is then essentially the same as above where
we aimed at predicting spikes by a linear model of the stimulus (Section 10.2). The only
difference is that here we are regressing the spikes onto the stimulus, whereas previously
we were regressing the stimulus onto the spike response.

11.3.2 Assessing decoding uncertainty (*)

In addition to providing a reliable estimate of the stimulus underlying a set of spike res-
ponses, computing the MAP estimate Syap gives us easy access to several important quan-
tities for analyzing the neural code. In particular, the variance of the posterior distribution
around Xpap tells us something about which stimulus features are best encoded by the
response D. For example, along stimulus axes where the posterior has small variance (i.e.,
the posterior declines rapidly as we move away from Xyap), we have relatively high cer-
tainty that the true x is close to fpap. Conversely, we have relatively low certainty about
any feature axis along which the posterior variance is large.

We can measure the scale of the posterior distribution along an arbitrary axis in a fairly
simple manner: since we know (by the above concavity arguments) that the posterior is
characterized by a single “bump,” and the position of the peak of this bump is already
characterized by fmap, it is enough to measure the curvature of this bump at the peak
Xmap- Mathematically, we measure this curvature by computing the “Hessian” matrix A of
second derivatives of the log-posterior,

92

Moreover, the eigendecomposition of this matrix A tells us exactly which axes of stimulus
space correspond to the “best” and “worst” encoded features of the neural response: small
eigenvalues of A correspond to directions of small curvature, where the observed data D
poorly constrains the posterior distribution p(x|D) (and therefore the posterior variance
will be relatively large in this direction), while conversely large eigenvalues in A imply
relatively precise knowledge of x, i.e., small posterior variance (Huys et al., 2006) (for this
reason the Hessian of the log-likelihood p(D|x) is referred to as the “observed Fisher infor-
mation matrix” in the statistics literature). In principle, this posterior uncertainty analysis
can potentially clarify what features of the stimulus a “downstream” neuron might care
most about.

We can furthermore use this Hessian to construct a useful approximation to the posterior
p(x|D). The idea is simply to approximate this log-concave bump with a Gaussian function,
where the parameters of the Gaussian are chosen to exactly match the peak and curvature
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of the true posterior. This approximation is quite common in the physics and statistics
literature (Kass and Raftery, 1995; E. Brown e al., 1998; Rieke et al., 1997). Specifically,

p(x|D) ~ (ZE)—d/Z‘A‘1/26—(x—fMAP)TA(x—fMAP)/2, (11.17)

with d = dim(x). We can then read off the approximate posterior entropy or variance of
x;: e.g., var(x;|D) =~ [A™1];;. As discussed further in Ahmadian ef al. (2011b) and Pillow
et al. (2011), the approximation by the Gaussian of Eq. (11.17) is often quite accurate in
the context of decoding. See Rieke et al. (1997) and Pillow et al. (2011) for discussion of a
related bound on the posterior entropy, which can be used to bound the mutual information
between the stimulus and response.

11.3.3 Decoding in vision and neuroprosthetics

We have established that generalized integrate-and-fire models can predict with good accu-
racy the activity of real neurons. Is it sensible to assert that we have understood how the
neural system translates stimulus into patterns of action potentials? If so we should be able
to read the neuronal activity to reconstruct its tangible meaning. As was briefly discussed
in the introduction to Section 11.3, reading the neural code has practical applications; a
common example of such applications is to help tetraplegic patients to control artificial
limbs. In this section, we illustrate decoding in two distinct scenarios. In the first scenario
(Fig. 11.11), a monochrome movie is reconstructed from the activity of neurons in the
visual pathway. In the second example (Fig. 11.12), it is the time-dependent velocities of
hand movements that are decoded from activity in the area MI of the cortex.

Using the methods described in the introduction to Section 11.3, Pillow et al. (2008)
reconstructed the time-dependent light stimulus from 27 ganglion cells recorded in the
retina. First, coupled integrate-and-fire models were optimized on training data (see Sec-
tion 11.2.2). Once the appropriate set of parameter was determined, spike trains from the
data reserved for testing were used to decode the stimulus. Decoding was performed with
the methods discussed in the introduction to Section 11.3.

The stimulus was a spatio-temporal binary white noise. The decoding performance can
be quantified by evaluating the signal-to-noise ratio for different frequencies (Fig. 11.11).
For most of the frequencies, the signal-to-noise ratio of the decoded signal was greater
than 1, meaning that the decoded signal was greater than the error. For the fully coupled
model discussed in Section 11.2.2, the signal-to-noise ratio can be higher than 3.5 for some
frequencies. The decoding performance is expected to grow with the number of recorded
neurons, as can be seen in Fig. 11.11c.

We now consider a second example which has applications for neuroprosthetics. The
ultimate aim of neuroprosthetics is to help human patients who have lost a limb. Prosthetic
limbs are often available for these patients. While prosthesis works from a mechanical point
of view, the intuitive control of the prosthetic device poses big challenges. One possible
route of research is to read out, directly from the brain, the intentions of the user of the
prosthetic device.
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Fig. 11.11 Decoding of light stimulus from recordings of neurons in the retina. (a) Binary light
stimulus (thick black) is compared with the decoded stimulus using Bayesian MAP (dashed line,
Section 11.3.1). (b) The signal-to-noise ratio (SNR) as function of frequency for decoding using the
fully coupled model (thick line), the uncoupled model (thin line) or using an optimal linear decoder
(dashed lines). (c) Increasing the number of cells improves the decoding performance of both the
coupled model (thick line) and the optimal linear decoder (dashed lines). (a) and (c) are redrawn
from Pillow et al. (2011), (b) follows a similar figure to one in Pillow et al. (2008).

In preliminary experiments, a monkey moves a tracking device with his hand while an
electrode records from neurons of its cortex. The electrode is placed in an area associated
with planning movements (Donoghue et al., 1998). Truccolo et al. (2005) used generalized
integrate-and-fire models to decode the hand movements from the recorded activity.

Again here, the first step was to fit the model parameters. The model itself was very
similar to the one seen in Section 11.2.2 but without coupling terms and with a different
nonlinear relation between model membrane potential and firing intensity. A more notewor-
thy difference is the input x which consisted of hand velocity such that the receptive field
k mapped how the x- and y-components of the velocity influenced the driving potential.

Instead of the method described in Section 11.3.1, Truccolo et al. (2005) used a point-
process filter (Eden et al., 2004). The decoding algorithm is a recursive algorithm for cal-
culating the Bayesian estimate of the stimulus at time ¢ in term the past activity. This
recursive approach is necessary in this real-time application. The decoding performance is
illustrated in Fig. 11.12. Signal-to-noise ratio for this decoding was between 1.0 and 2.5,
which is rather impressive given the typical variability of cortical neurons and the small
number of cells used for decoding (between 5 and 20). This exemplifies that generalized
integrate-and-fire models can help in building a brain—-machine interface for controlling
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Fig. 11.12 Decoding hand velocity from spiking activity in area MI of cortex. (a) Schematics. (b) The
real hand velocity (thin black line) is compared to the decoded velocity (thick black line) for the y-
(top) and the x-components (bottom). Modified from Truccolo et al. (2005).

prosthetic limbs by “reading” the activity of cortical neurons. A number of groups are now
working to further improve these methods for use in prosthetic systems.

11.4 Summary

Generalized integrate-and-fire models can predict the spiking activity of cortical cells such
as the main inhibitory and excitatory cell type in layer 2-3 of the cortex. For excitatory
neurons, more than 80% of spike timings can be predicted by these models, while for
inhibitory neurons the percentage is close to 100%. Similar model performance is seen in
the retina, where the activity of up to 250 neurons can be predicted simultaneously (Vidne
etal., 2012).

The same models can also be used to decode the activity of neurons. For instance, the
spike trains of retinal neurons can be decoded so as to reconstruct a slightly blurred version
of the original image movie shown to the retina. Also, the activity of motor cortical neurons
can be decoded to reconstruct the intended hand movement in two (or more) dimensions.
Thus, the abstract mathematical framework of generalized integrate-and-fire models might
ultimately contribute to technical solutions that help human patients.

Literature

The influential book by Rieke er al. (1997) gives a broad introduction to the field of neural
coding with a special focus on decoding. The LNP model, reverse correlation techniques,
and application to receptive field measurements are reviewed in Simoncelli et al. (2004).
Predictions of spike timings for a time-dependent input with models including spike-
history effects were performed by, for example, Keat et al. (2001) and Jolivet et al. (2006),
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and different methods and approaches were compared in a series of international competi-
tions (Jolivet et al., 2008a,b).

The first decoding attempts used time-averaged firing rates to decode information from
a diverse population of neurons (Georgopoulos et al., 1986). Then the methods were made
more precise in an effort to understand the temporal structure of the neural code (Optican
and Richmond, 1987; Bialek et al., 1991). In particular linear stimulus reconstruction from
measured spike trains (Rieke ez al., 1997) has been widely applied.

Efficient decoding methods are a necessary requirement if a prosthetic arm is controlled
by the spikes recorded from cortical neurons. Introducing spike history effects (Truccolo
et al., 2005) or interneuron coupling (Pillow et al., 2008) helped to improve decoding
accuracy, but the improvement of decoding techniques went in parallel with other technical
achievements (Shoham, 2001; Brockwell et al., 2004, 2007; Eden et al., 2004; Truccolo
et al., 2005; Srinivasan and Brown, 2007; Kulkarni and Paninski, 2007; Koyama et al.,
2010; Paninski et al., 2010).

The discussion of the statistical principles of encoding and decoding in the present and
the previous chapter is partly based on the treatment in Paninski et al. (2007).

Exercises

1. Linear filter as optimal stimulus. Consider an ensemble of stimuli x with a “power” constraint
lx|?> <ec.
(a) Show that, under the linear rate model of Eq.(11.10), the stimulus that maximizes the
instantaneous rate is x = k.
Hint: Use Lagrange multipliers to implement the constraint |x|* = c.
(b) Assume that the a spatially localized time-dependent stimulus x(t) is presented in the center
of the positive lobe of the neurons receptive field. Describe the neuronal 